Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples.

Hsieh EJ, Bereman MS, Durand S, Valaskovic GA, MacCoss MJ.

J Am Soc Mass Spectrom. 2013 Jan;24(1):148-53. doi: 10.1007/s13361-012-0508-6. Epub 2012 Nov 30.

2.

Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome.

Wang H, Yang Y, Li Y, Bai B, Wang X, Tan H, Liu T, Beach TG, Peng J, Wu Z.

J Proteome Res. 2015 Feb 6;14(2):829-38. doi: 10.1021/pr500882h. Epub 2014 Dec 12.

3.

Systematical optimization of reverse-phase chromatography for shotgun proteomics.

Xu P, Duong DM, Peng J.

J Proteome Res. 2009 Aug;8(8):3944-50. doi: 10.1021/pr900251d.

4.

i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins.

Wada K, Ogiwara A, Nagasaka K, Tanaka N, Komatsu Y.

Rapid Commun Mass Spectrom. 2011 Apr 15;25(7):960-8. doi: 10.1002/rcm.4943. Epub 2011 Mar 14.

PMID:
21416533
5.

[Application of peptide retention time in proteome research].

Shao C, Gao Y.

Se Pu. 2010 Feb;28(2):128-34. Chinese.

PMID:
20556949
6.

Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis.

Sprung RW Jr, Brock JW, Tanksley JP, Li M, Washington MK, Slebos RJ, Liebler DC.

Mol Cell Proteomics. 2009 Aug;8(8):1988-98. doi: 10.1074/mcp.M800518-MCP200. Epub 2009 May 24.

7.

High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests.

Eeltink S, Dolman S, Detobel F, Swart R, Ursem M, Schoenmakers PJ.

J Chromatogr A. 2010 Oct 22;1217(43):6610-5. doi: 10.1016/j.chroma.2010.03.037. Epub 2010 Mar 27.

PMID:
20382391
8.
9.

Rapid and deep human proteome analysis by single-dimension shotgun proteomics.

Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA.

Mol Cell Proteomics. 2013 Nov;12(11):3330-8. doi: 10.1074/mcp.O113.028787. Epub 2013 Jul 22.

10.

Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics.

Hardouin J, Duchateau M, Joubert-Caron R, Caron M.

Rapid Commun Mass Spectrom. 2006;20(21):3236-44.

PMID:
17016832
11.

Protein pre-fractionation with a mixed-bed ion exchange column in 3D LC-MS/MS proteome analysis.

Zhang L, Yao L, Zhang Y, Xue T, Dai G, Chen K, Hu X, Xu LX.

J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Sep 15;905:96-104. doi: 10.1016/j.jchromb.2012.08.008. Epub 2012 Aug 14.

PMID:
22939632
12.

Shotgun analysis of membrane proteomes by an improved SDS-assisted sample preparation method coupled with liquid chromatography-tandem mass spectrometry.

Lin Y, Jiang H, Yan Y, Peng B, Chen J, Lin H, Liu Z.

J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Dec 12;911:6-14. doi: 10.1016/j.jchromb.2012.10.016. Epub 2012 Oct 23.

PMID:
23217299
13.

Yield of 6,000 proteins by 1D nLC-MS/MS without pre-fractionation.

Anagnostopoulos AK, Stravopodis DJ, Tsangaris GT.

J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Mar 15;1047:92-96. doi: 10.1016/j.jchromb.2016.08.031. Epub 2016 Aug 21.

PMID:
27605470
14.

One-hour proteome analysis in yeast.

Richards AL, Hebert AS, Ulbrich A, Bailey DJ, Coughlin EE, Westphall MS, Coon JJ.

Nat Protoc. 2015 May;10(5):701-14. doi: 10.1038/nprot.2015.040. Epub 2015 Apr 9.

PMID:
25855955
15.

Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up.

Köcher T, Pichler P, De Pra M, Rieux L, Swart R, Mechtler K.

Proteomics. 2014 Sep;14(17-18):1999-2007. doi: 10.1002/pmic.201300418. Epub 2014 Jul 14.

PMID:
24920484
16.

Ultra-fast tandem mass spectrometry scanning combined with monolithic column liquid chromatography increases throughput in proteomic analysis.

Batycka M, Inglis NF, Cook K, Adam A, Fraser-Pitt D, Smith DG, Main L, Lubben A, Kessler BM.

Rapid Commun Mass Spectrom. 2006;20(14):2074-80.

PMID:
16773668
17.

GOAT--a simple LC-MS/MS gradient optimization tool.

Trudgian DC, Fischer R, Guo X, Kessler BM, Mirzaei H.

Proteomics. 2014 Jun;14(12):1467-71. doi: 10.1002/pmic.201300524. Epub 2014 May 15.

18.

Automated 2D peptide separation on a 1D nano-LC-MS system.

Taylor P, Nielsen PA, Trelle MB, Hørning OB, Andersen MB, Vorm O, Moran MF, Kislinger T.

J Proteome Res. 2009 Mar;8(3):1610-6. doi: 10.1021/pr800986c.

PMID:
19178303
19.
20.

Improvement of capture compound mass spectrometry technology (CCMS) for the profiling of human kinases by combination with 2D LC-MS/MS.

Fischer JJ, Graebner O, Dreger M, Glinski M, Baumgart S, Koester H.

J Biomed Biotechnol. 2011;2011:850589. doi: 10.1155/2011/850589. Epub 2011 Sep 19.

Supplemental Content

Support Center