Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Tailored ion radius distribution for increased dynamic range in FT-ICR mass analysis of complex mixtures.

Kaiser NK, McKenna AM, Savory JJ, Hendrickson CL, Marshall AG.

Anal Chem. 2013 Jan 2;85(1):265-72. doi: 10.1021/ac302678v. Epub 2012 Dec 13.

PMID:
23194162
2.

Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion.

Vladimirov G, Hendrickson CL, Blakney GT, Marshall AG, Heeren RM, Nikolaev EN.

J Am Soc Mass Spectrom. 2012 Feb;23(2):375-84. doi: 10.1007/s13361-011-0268-8. Epub 2011 Oct 27. Erratum in: J Am Soc Mass Spectrom. 2012 Feb;23(2):385.

PMID:
22033889
4.
7.
8.

Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

Boldin IA, Nikolaev EN.

Rapid Commun Mass Spectrom. 2009 Oct;23(19):3213-9. doi: 10.1002/rcm.4231.

PMID:
19725021
9.

Twelve million resolving power on 4.7 T Fourier transform ion cyclotron resonance instrument with dynamically harmonized cell--observation of fine structure in peptide mass spectra.

Popov IA, Nagornov K, Vladimirov GN, Kostyukevich YI, Nikolaev EN.

J Am Soc Mass Spectrom. 2014 May;25(5):790-9. doi: 10.1007/s13361-014-0846-7. Epub 2014 Mar 7.

PMID:
24604470
10.
11.

Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach.

Nikolaev EN, Heeren RM, Popov AM, Pozdneev AV, Chingin KS.

Rapid Commun Mass Spectrom. 2007;21(22):3527-46.

PMID:
17944004
12.

Mass measurement errors caused by 'local" frequency perturbations in FTICR mass spectrometry.

Masselon C, Tolmachev AV, Anderson GA, Harkewicz R, Smith RD.

J Am Soc Mass Spectrom. 2002 Jan;13(1):99-106.

PMID:
11777206
14.

Absorption-mode spectra on the dynamically harmonized Fourier transform ion cyclotron resonance cell.

Qi Y, Witt M, Jertz R, Baykut G, Barrow MP, Nikolaev EN, O'Connor PB.

Rapid Commun Mass Spectrom. 2012 Sep 15;26(17):2021-6. doi: 10.1002/rcm.6311.

PMID:
22847701
15.

Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis.

Kaiser NK, Savory JJ, McKenna AM, Quinn JP, Hendrickson CL, Marshall AG.

Anal Chem. 2011 Sep 1;83(17):6907-10. doi: 10.1021/ac201546d. Epub 2011 Aug 12.

PMID:
21838231
16.

Space charge effects on relative peak heights in fourier transform-ion cyclotron resonance spectra.

Uechi GT, Dunbar RC.

J Am Soc Mass Spectrom. 1992 Oct;3(7):734-41. doi: 10.1016/1044-0305(92)87086-E.

PMID:
24234640
17.

Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a "walking" calibration equation.

Savory JJ, Kaiser NK, McKenna AM, Xian F, Blakney GT, Rodgers RP, Hendrickson CL, Marshall AG.

Anal Chem. 2011 Mar 1;83(5):1732-6. doi: 10.1021/ac102943z. Epub 2011 Jan 28.

PMID:
21275417
18.

High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis.

Nagornov KO, Gorshkov MV, Kozhinov AN, Tsybin YO.

Anal Chem. 2014 Sep 16;86(18):9020-8. doi: 10.1021/ac501579h. Epub 2014 Sep 3.

PMID:
25140615
19.

Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis.

Kim S, Rodgers RP, Blakney GT, Hendrickson CL, Marshall AG.

J Am Soc Mass Spectrom. 2009 Feb;20(2):263-8. doi: 10.1016/j.jasms.2008.10.001. Epub 2008 Oct 9.

20.

Excitation modes for fourier transform-ion cyclotron resonance mass spectrometry.

Schweikhard L, Marshall AG.

J Am Soc Mass Spectrom. 1993 Jun;4(6):433-52. doi: 10.1016/1044-0305(93)80001-F.

PMID:
24235002

Supplemental Content

Support Center