Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.

Neal RA, Jean A, Park H, Wu PB, Hsiao J, Engelmayr GC Jr, Langer R, Freed LE.

Tissue Eng Part A. 2013 Mar;19(5-6):793-807. doi: 10.1089/ten.tea.2012.0330. Epub 2012 Nov 28.

2.

Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering.

Masoumi N, Jean A, Zugates JT, Johnson KL, Engelmayr GC Jr.

J Biomed Mater Res A. 2013 Jan;101(1):104-14. doi: 10.1002/jbm.a.34305. Epub 2012 Jul 24.

3.

Accordion-like honeycombs for tissue engineering of cardiac anisotropy.

Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE.

Nat Mater. 2008 Dec;7(12):1003-10. doi: 10.1038/nmat2316. Epub 2008 Nov 2.

4.

Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering.

Jean A, Engelmayr GC Jr.

J Biomech. 2010 Nov 16;43(15):3035-43. doi: 10.1016/j.jbiomech.2010.06.032. Epub 2010 Jul 31.

5.

Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.

Frydrych M, Román S, MacNeil S, Chen B.

Acta Biomater. 2015 May;18:40-9. doi: 10.1016/j.actbio.2015.03.004. Epub 2015 Mar 10.

PMID:
25769230
6.

The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs.

Park H, Larson BL, Guillemette MD, Jain SR, Hua C, Engelmayr GC Jr, Freed LE.

Biomaterials. 2011 Mar;32(7):1856-64. doi: 10.1016/j.biomaterials.2010.11.032. Epub 2010 Dec 8.

7.

PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.

Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A.

Biomaterials. 2013 Sep;34(27):6355-66. doi: 10.1016/j.biomaterials.2013.04.045. Epub 2013 Jun 6.

8.

3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.

Kolewe ME, Park H, Gray C, Ye X, Langer R, Freed LE.

Adv Mater. 2013 Aug 27;25(32):4459-65. doi: 10.1002/adma.201301016. Epub 2013 Jun 14.

9.

Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development.

Park H, Larson BL, Kolewe ME, Vunjak-Novakovic G, Freed LE.

Exp Cell Res. 2014 Feb 15;321(2):297-306. doi: 10.1016/j.yexcr.2013.11.005. Epub 2013 Nov 14.

10.

Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance.

Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A.

Biofabrication. 2014 Dec 17;7(1):015001. doi: 10.1088/1758-5090/7/1/015001.

11.

Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering.

Masoumi N, Johnson KL, Howell MC, Engelmayr GC Jr.

Acta Biomater. 2013 Apr;9(4):5974-88. doi: 10.1016/j.actbio.2013.01.001. Epub 2013 Jan 5.

PMID:
23295404
12.

Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application.

Rai R, Tallawi M, Barbani N, Frati C, Madeddu D, Cavalli S, Graiani G, Quaini F, Roether JA, Schubert DW, Rosellini E, Boccaccini AR.

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3677-87. doi: 10.1016/j.msec.2013.04.058. Epub 2013 May 4.

13.

Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.

Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, Langer R, Freed LE, Vunjak-Novakovic G.

J Biomed Mater Res A. 2008 Sep;86(3):713-24.

14.

Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering.

Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S.

Int J Cardiol. 2013 Aug 20;167(4):1461-8. doi: 10.1016/j.ijcard.2012.04.045. Epub 2012 May 5.

PMID:
22564386
15.

Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, Dokmeci MR, Khademhosseini A.

Biomaterials. 2014 Aug;35(26):7346-54. doi: 10.1016/j.biomaterials.2014.05.014. Epub 2014 Jun 10.

16.

Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds.

Guillemette MD, Park H, Hsiao JC, Jain SR, Larson BL, Langer R, Freed LE.

Macromol Biosci. 2010 Nov 10;10(11):1330-7. doi: 10.1002/mabi.201000165.

17.

Tri-layered elastomeric scaffolds for engineering heart valve leaflets.

Masoumi N, Annabi N, Assmann A, Larson BL, Hjortnaes J, Alemdar N, Kharaziha M, Manning KB, Mayer JE Jr, Khademhosseini A.

Biomaterials. 2014 Sep;35(27):7774-85. doi: 10.1016/j.biomaterials.2014.04.039. Epub 2014 Jun 16.

18.

Channelled scaffolds for engineering myocardium with mechanical stimulation.

Zhang T, Wan LQ, Xiong Z, Marsano A, Maidhof R, Park M, Yan Y, Vunjak-Novakovic G.

J Tissue Eng Regen Med. 2012 Oct;6(9):748-56. doi: 10.1002/term.481. Epub 2011 Nov 14.

19.

Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.

Crapo PM, Wang Y.

Biomaterials. 2010 Mar;31(7):1626-35. doi: 10.1016/j.biomaterials.2009.11.035. Epub 2009 Dec 3.

20.

Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering.

Hagandora CK, Gao J, Wang Y, Almarza AJ.

Tissue Eng Part A. 2013 Mar;19(5-6):729-37. doi: 10.1089/ten.tea.2012.0304. Epub 2012 Nov 16.

Supplemental Content

Support Center