Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

Yu KM, Tong W, West A, Cheung K, Li T, Smith G, Guo Y, Tsang SC.

Nat Commun. 2012;3:1230. doi: 10.1038/ncomms2242.

PMID:
23187630
2.

Direct methanol steam reforming to hydrogen over CuZnGaOx catalysts without CO post-treatment: mechanistic considerations.

Tong W, Cheung K, West A, Yu KM, Tsang SC.

Phys Chem Chem Phys. 2013 May 21;15(19):7240-8. doi: 10.1039/c3cp51073e.

PMID:
23575551
3.

An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

Shi L, Yang G, Tao K, Yoneyama Y, Tan Y, Tsubaki N.

Acc Chem Res. 2013 Aug 20;46(8):1838-47. doi: 10.1021/ar300217j. Epub 2013 Mar 4.

PMID:
23459583
4.

Production of hydrogen-rich gas from methane by thermal plasma reform.

Chun YN, Kim SC.

J Air Waste Manag Assoc. 2007 Dec;57(12):1447-51.

PMID:
18200929
5.

Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

Homsi D, Rached JA, Aouad S, Gennequin C, Dahdah E, Estephane J, Tidahy HL, Aboukaïs A, Abi-Aad E.

Environ Sci Pollut Res Int. 2017 Apr;24(11):9907-9913. doi: 10.1007/s11356-016-7480-9. Epub 2016 Aug 23.

PMID:
27552997
6.

High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.

Pimenidou P, Rickett G, Dupont V, Twigg MV.

Bioresour Technol. 2010 Dec;101(23):9279-86. doi: 10.1016/j.biortech.2010.06.079. Epub 2010 Jul 23.

PMID:
20655199
7.

Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.

Wu C, Williams PT.

Environ Technol. 2012 Feb-Mar;33(4-6):631-8.

PMID:
22629637
8.

Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts.

Montini T, Singh R, Das P, Lorenzut B, Bertero N, Riello P, Benedetti A, Giambastiani G, Bianchini C, Zinoviev S, Miertus S, Fornasiero P.

ChemSusChem. 2010 May 25;3(5):619-28. doi: 10.1002/cssc.200900243.

PMID:
20422673
9.

Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

Olah GA, Goeppert A, Czaun M, Prakash GK.

J Am Chem Soc. 2013 Jan 16;135(2):648-50. doi: 10.1021/ja311796n. Epub 2012 Dec 28.

PMID:
23256664
10.

The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.

Ok HJ, Park MH, Moon DJ, Kim JH, Park NC, Kim YC.

J Nanosci Nanotechnol. 2015 Jan;15(1):449-53.

PMID:
26328379
11.
12.

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M.

Nature. 2013 Mar 7;495(7439):85-9. doi: 10.1038/nature11891. Epub 2013 Feb 27.

PMID:
23446345
13.

In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst.

Wang ML, Zheng HZ, Li JM, Weng WZ, Xia WS, Huang CJ, Wan HL.

Chem Asian J. 2011 Feb 1;6(2):580-9. doi: 10.1002/asia.201000580. Epub 2011 Jan 4.

PMID:
21254432
14.
15.

Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.

Mondal K, Sasmal S, Badgandi S, Chowdhury DR, Nair V.

Environ Sci Pollut Res Int. 2016 Nov;23(22):22267-22273. Epub 2016 Mar 4.

PMID:
26939689
16.

A novel study of methane-rich gas reforming to syngas and its kinetics over semicoke catalyst.

Zhang G, Su A, Qu J, Du Y.

ScientificWorldJournal. 2014;2014:707294. doi: 10.1155/2014/707294. Epub 2014 May 15.

17.

Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming.

Xi H, Hou X, Liu Y, Qing S, Gao Z.

Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11886-9. doi: 10.1002/anie.201405213. Epub 2014 Sep 11.

PMID:
25213737
18.

[In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].

Ji HB, Xu JH, Xie JF, Chen QL.

Guang Pu Xue Yu Guang Pu Fen Xi. 2008 Jun;28(6):1246-50. Chinese.

PMID:
18800697
19.

Sustainable production of syngas from biomass-derived glycerol by steam reforming over highly stable Ni/SiC.

Kim SM, Woo SI.

ChemSusChem. 2012 Aug;5(8):1513-22. doi: 10.1002/cssc.201100821. Epub 2012 Jun 29.

PMID:
22753307
20.

Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

Fermoso J, Gil MV, Rubiera F, Chen D.

ChemSusChem. 2014 Nov;7(11):3063-77. doi: 10.1002/cssc.201402675. Epub 2014 Sep 10.

PMID:
25209388

Supplemental Content

Support Center