Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea.

Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO, Deppenmeier U, Martin WF.

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20537-42. doi: 10.1073/pnas.1209119109. Epub 2012 Nov 26.

2.

Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales.

Andam CP, Harlow TJ, Papke RT, Gogarten JP.

BMC Evol Biol. 2012 Jun 13;12:85. doi: 10.1186/1471-2148-12-85.

3.

Evolution of rhodopsin ion pumps in haloarchaea.

Sharma AK, Walsh DA, Bapteste E, Rodriguez-Valera F, Ford Doolittle W, Papke RT.

BMC Evol Biol. 2007 May 18;7:79.

4.

Modularized evolution in archaeal methanogens phylogenetic forest.

Li J, Wong CF, Wong MT, Huang H, Leung FC.

Genome Biol Evol. 2014 Dec 9;6(12):3344-59. doi: 10.1093/gbe/evu259.

5.

Phylogeny of Rieske/cytb complexes with a special focus on the Haloarchaeal enzymes.

Baymann F, Schoepp-Cothenet B, Lebrun E, van Lis R, Nitschke W.

Genome Biol Evol. 2012;4(8):720-9. doi: 10.1093/gbe/evs056. Epub 2012 Jul 12.

6.

Origins of major archaeal clades correspond to gene acquisitions from bacteria.

Nelson-Sathi S, Sousa FL, Roettger M, Lozada-Chávez N, Thiergart T, Janssen A, Bryant D, Landan G, Schönheit P, Siebers B, McInerney JO, Martin WF.

Nature. 2015 Jan 1;517(7532):77-80. doi: 10.1038/nature13805. Epub 2014 Oct 15.

7.

Searching for species in haloarchaea.

Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF.

Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14092-7. Epub 2007 Aug 21.

8.

Genome trees constructed using five different approaches suggest new major bacterial clades.

Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV.

BMC Evol Biol. 2001 Oct 20;1:8.

9.

The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.

Cavalier-Smith T.

Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7-76. Review.

PMID:
11837318
10.

Metabolic bacterial genes and the construction of high-level composite lineages of life.

Méheust R, Lopez P, Bapteste E.

Trends Ecol Evol. 2015 Mar;30(3):127-9. doi: 10.1016/j.tree.2015.01.001. Epub 2015 Jan 16.

11.

Plasmids from Euryarchaeota.

Forterre P, Krupovic M, Raymann K, Soler N.

Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.PLAS-0027-2014. Review.

PMID:
26104461
12.

Genomes in flux: the evolution of archaeal and proteobacterial gene content.

Snel B, Bork P, Huynen MA.

Genome Res. 2002 Jan;12(1):17-25.

13.

Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen.

Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT.

ISME J. 2016 Oct;10(10):2478-87. doi: 10.1038/ismej.2016.33. Epub 2016 Mar 4.

14.

A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes.

Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W.

Mol Biol Evol. 2004 Sep;21(9):1643-60. Epub 2004 May 21.

PMID:
15155797
15.

The core and unique proteins of haloarchaea.

Capes MD, DasSarma P, DasSarma S.

BMC Genomics. 2012 Jan 24;13:39. doi: 10.1186/1471-2164-13-39.

16.

Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated.

Groussin M, Boussau B, Szöllõsi G, Eme L, Gouy M, Brochier-Armanet C, Daubin V.

Mol Biol Evol. 2016 Feb;33(2):305-10. doi: 10.1093/molbev/msv249. Epub 2015 Nov 4.

18.

Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota.

Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV.

Science. 2012 Feb 3;335(6068):587-90. doi: 10.1126/science.1212665.

19.
20.

Supplemental Content

Support Center