Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Voltage-controllable spin beam splitter based on realistic magnetic-barrier nanostructure.

Lu MW, Wang ZY, Chen SY, Zhang GL.

Micron. 2013 Feb;45:17-21. doi: 10.1016/j.micron.2012.10.007. Epub 2012 Oct 22.

PMID:
23182680
2.

Direct electronic measurement of the spin Hall effect.

Valenzuela SO, Tinkham M.

Nature. 2006 Jul 13;442(7099):176-9.

PMID:
16838016
3.

Goos-Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures.

Asadpour SH.

Appl Opt. 2017 Mar 10;56(8):2201-2208. doi: 10.1364/AO.56.002201.

PMID:
28375303
4.

Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets.

Min BC, Motohashi K, Lodder C, Jansen R.

Nat Mater. 2006 Oct;5(10):817-22. Epub 2006 Sep 17.

PMID:
16980953
5.

Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams.

Bliokh KY, Shadrivov IV, Kivshar YS.

Opt Lett. 2009 Feb 1;34(3):389-91.

PMID:
19183668
6.

Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.

Broe J, Keller O.

J Opt Soc Am A Opt Image Sci Vis. 2002 Jun;19(6):1212-22.

PMID:
12049360
7.

Spin polarization and magnetoresistance through a ferromagnetic barrier in bilayer graphene.

Cheraghchi H, Adinehvand F.

J Phys Condens Matter. 2012 Feb 1;24(4):045303. doi: 10.1088/0953-8984/24/4/045303.

PMID:
22223564
8.

Magnetic-field-sensing materials composed of metal-semiconductor hybrid nanostructures.

Akinaga H.

J Nanosci Nanotechnol. 2005 Feb;5(2):250-4.

PMID:
15853143
9.

Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method.

Li X, Wang P, Xing F, Chen XD, Liu ZB, Tian JG.

Opt Lett. 2014 Oct 1;39(19):5574-7. doi: 10.1364/OL.39.005574.

PMID:
25360931
10.

Electric field effects on spin transport in defective metallic carbon nanotubes.

Son YW, Cohen ML, Louie SG.

Nano Lett. 2007 Nov;7(11):3518-22. Epub 2007 Oct 31.

PMID:
17973439
11.

Composition controlled spin polarization in Co(1-x)Fe(x)S(2) alloys.

Leighton C, Manno M, Cady A, Freeland JW, Wang L, Umemoto K, Wentzcovitch RM, Chen TY, Chien CL, Kuhns PL, Hoch MJ, Reyes AP, Moulton WG, Dahlberg ED, Checkelsky J, Eckert J.

J Phys Condens Matter. 2007 Aug 8;19(31):315219. doi: 10.1088/0953-8984/19/31/315219. Epub 2007 Jul 4.

PMID:
21694119
12.

Electrical detection of spin precession in a metallic mesoscopic spin valve.

Jedema FJ, Heersche HB, Filip AT, Baselmans JJ, van Wees BJ.

Nature. 2002 Apr 18;416(6882):713-6.

PMID:
11961548
13.
14.

100% spin accumulation in non-half-metallic ferromagnet-semiconductor junctions.

Petukhov AG, Niggemann J, Smelyanskiy VN, Osipov VV.

J Phys Condens Matter. 2007 Aug 8;19(31):315205. doi: 10.1088/0953-8984/19/31/315205. Epub 2007 Jul 4.

PMID:
21694106
15.

Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes.

Soni J, Mansha S, Dutta Gupta S, Banerjee A, Ghosh N.

Opt Lett. 2014 Jul 15;39(14):4100-3. doi: 10.1364/OL.39.004100.

PMID:
25121661
16.

Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors.

Jeon KR, Min BC, Spiesser A, Saito H, Shin SC, Yuasa S, Jansen R.

Nat Mater. 2014 Apr;13(4):360-6. doi: 10.1038/nmat3869. Epub 2014 Feb 2.

PMID:
24487495
17.

Interferometric method to measure the Goos-Hänchen shift.

Prajapati C, Ranganathan D, Joseph J.

J Opt Soc Am A Opt Image Sci Vis. 2013 Apr 1;30(4):741-8. doi: 10.1364/JOSAA.30.000741.

PMID:
23595336
18.

Electrical control of spin coherence in semiconductor nanostructures.

Salis G, Kato Y, Ensslin K, Driscoll DC, Gossard AC, Awschalom DD.

Nature. 2001 Dec 6;414(6864):619-22.

PMID:
11740554
19.

Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor.

Smet JH, Deutschmann RA, Ertl F, Wegscheider W, Abstreiter G, von Klitzing K.

Nature. 2002 Jan 17;415(6869):281-6.

PMID:
11796998
20.

Spin canting induced nonreciprocal Goos-Hänchen shifts.

Macêdo R, Stamps RL, Dumelow T.

Opt Express. 2014 Nov 17;22(23):28467-78. doi: 10.1364/OE.22.028467.

PMID:
25402089

Supplemental Content

Support Center