Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

N-acetylglucosamine biofunctionalized CdSeTe quantum dots as fluorescence probe for specific protein recognition.

Cheng FF, Liang GX, Shen YY, Rana RK, Zhu JJ.

Analyst. 2013 Jan 21;138(2):666-70. doi: 10.1039/c2an36434d.

PMID:
23181261
2.

Synthesis of near-infrared-emitting CdTeSe and CdZnTeSe quantum dots.

Yang F, Yang P, Zhang L.

Luminescence. 2013 Nov-Dec;28(6):836-41. doi: 10.1002/bio.2442. Epub 2012 Oct 11.

PMID:
23060275
3.

Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots.

Liang GX, Gu MM, Zhang JR, Zhu JJ.

Nanotechnology. 2009 Oct 14;20(41):415103. doi: 10.1088/0957-4484/20/41/415103. Epub 2009 Sep 18.

PMID:
19762946
4.

CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans.

Tenório DP, Andrade CG, Cabral Filho PE, Sabino CP, Kato IT, Carvalho LB Jr, Alves S Jr, Ribeiro MS, Fontes A, Santos BS.

J Photochem Photobiol B. 2015 Jan;142:237-43. doi: 10.1016/j.jphotobiol.2014.11.010. Epub 2014 Dec 11.

PMID:
25559489
5.

Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots.

Liang GX, Liu HY, Zhang JR, Zhu JJ.

Talanta. 2010 Mar 15;80(5):2172-6. doi: 10.1016/j.talanta.2009.11.025. Epub 2009 Nov 13.

PMID:
20152468
6.

Accumulation of O-GlcNAc-displaying CdTe quantum dots in cells in the presence of ATP.

Niikura K, Nishio T, Akita H, Matsuo Y, Kamitani R, Kogure K, Harashima H, Ijiro K.

Chembiochem. 2007 Mar 5;8(4):379-84. No abstract available.

PMID:
17243188
7.

Probing lectin and sperm with carbohydrate-modified quantum dots.

Robinson A, Fang JM, Chou PT, Liao KW, Chu RM, Lee SJ.

Chembiochem. 2005 Oct;6(10):1899-905.

PMID:
16149042
8.

Stable sugar-chain-immobilized fluorescent nanoparticles for probing lectin and cells.

Shinchi H, Wakao M, Nakagawa S, Mochizuki E, Kuwabata S, Suda Y.

Chem Asian J. 2012 Nov;7(11):2678-82. doi: 10.1002/asia.201200362. Epub 2012 Aug 21.

PMID:
22907921
9.

Artificial polymeric receptors on the cell surface promote the efficient cellular uptake of quantum dots.

Niikura K, Nambara K, Okajima T, Kamitani R, Aoki S, Matsuo Y, Ijiro K.

Org Biomol Chem. 2011 Aug 21;9(16):5787-92. doi: 10.1039/c1ob05420a. Epub 2011 Jul 7.

PMID:
21738911
10.

Gene delivery system based on highly specific recognition of surface-vimentin with N-acetylglucosamine immobilized polyethylenimine.

Kim SJ, Ise H, Goto M, Komura K, Cho CS, Akaike T.

Biomaterials. 2011 May;32(13):3471-80. doi: 10.1016/j.biomaterials.2010.12.062. Epub 2011 Feb 16.

PMID:
21329974
11.

Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging.

Xue B, Deng DW, Cao J, Liu F, Li X, Akers W, Achilefu S, Gu YQ.

Dalton Trans. 2012 Apr 28;41(16):4935-47. doi: 10.1039/c2dt12436j.

PMID:
22451225
12.

Coenzyme Q functionalized CdTe/ZnS quantum dots for reactive oxygen species (ROS) imaging.

Qin LX, Ma W, Li DW, Li Y, Chen X, Kraatz HB, James TD, Long YT.

Chemistry. 2011 May 2;17(19):5262-71. doi: 10.1002/chem.201003749. Epub 2011 Apr 18.

PMID:
21503990
13.

The application of quantum dots as fluorescent label to glycoarray.

Huang GL, Liu TC, Liu MX, Mei XY.

Anal Biochem. 2005 May 1;340(1):52-6. Retraction in: Anal Biochem. 2008 Aug 1;379(1):138.

PMID:
15802129
14.

Simultaneous determination of concanavalin A and peanut agglutinin by dual-color quantum dots.

Zhang H, Zhang L, Liang RP, Huang J, Qiu JD.

Anal Chem. 2013 Nov 19;85(22):10969-76. doi: 10.1021/ac402496e. Epub 2013 Oct 30.

PMID:
24128387
15.

Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence.

Liang GX, Li LL, Liu HY, Zhang JR, Burda C, Zhu JJ.

Chem Commun (Camb). 2010 May 7;46(17):2974-6. doi: 10.1039/c000564a. Epub 2010 Mar 5.

PMID:
20386841
16.

Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.

Rawalekar S, Kaniyankandy S, Verma S, Ghosh HN.

Chemphyschem. 2011 Jun 20;12(9):1729-35. doi: 10.1002/cphc.201100105. Epub 2011 May 12.

PMID:
21567706
17.

70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine.

Guinez C, Lemoine J, Michalski JC, Lefebvre T.

Biochem Biophys Res Commun. 2004 Jun 18;319(1):21-6.

PMID:
15158436
18.

In situ spectral imaging of marker proteins in gastric cancer with near-infrared and visible quantum dots probes.

He Y, Xu H, Chen C, Peng J, Tang H, Zhang Z, Li Y, Pang D.

Talanta. 2011 Jul 15;85(1):136-41. doi: 10.1016/j.talanta.2011.03.035. Epub 2011 Mar 30.

PMID:
21645682
19.

A simple fluorescent strategy for in situ evaluation of cell surface carbohydrate with a quantum dot-lectin nanoprobe.

Xu X, Ding L, Xue Y, Ju H.

Analyst. 2010 Aug;135(8):1906-8. doi: 10.1039/c0an00250j. Epub 2010 Jun 1.

PMID:
20514385
20.

Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry.

Andrade CG, Cabral Filho PE, Tenório DP, Santos BS, Beltrão EI, Fontes A, Carvalho LB Jr.

Int J Nanomedicine. 2013;8:4623-9. doi: 10.2147/IJN.S51065. Epub 2013 Dec 2.

Supplemental Content

Support Center