Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.

Ha SJ, Galazka JM, Joong Oh E, Kordić V, Kim H, Jin YS, Cate JH.

Metab Eng. 2013 Jan;15:134-43. doi: 10.1016/j.ymben.2012.11.005. Epub 2012 Nov 22.

PMID:
23178501
2.

Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.

Kim H, Lee WH, Galazka JM, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Feb;98(3):1087-94. doi: 10.1007/s00253-013-5339-2. Epub 2013 Nov 5.

PMID:
24190499
3.

Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.

Lian J, Li Y, HamediRad M, Zhao H.

Biotechnol Bioeng. 2014 Aug;111(8):1521-31. doi: 10.1002/bit.25214. Epub 2014 Mar 11.

PMID:
24519319
4.

Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.

Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS.

Appl Environ Microbiol. 2011 Aug 15;77(16):5822-5. doi: 10.1128/AEM.05228-11. Epub 2011 Jun 24. Erratum in: Appl Environ Microbiol. 2011 Oct;77(20):7438. Cate, Jamie [corrected to Cate, Jamie H D].

5.

Cellodextrin transport in yeast for improved biofuel production.

Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH.

Science. 2010 Oct 1;330(6000):84-6. doi: 10.1126/science.1192838. Epub 2010 Sep 9.

7.
8.

Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.

Bae YH, Kang KH, Jin YS, Seo JH.

J Biotechnol. 2014 Jan;169:34-41. doi: 10.1016/j.jbiotec.2013.10.030. Epub 2013 Oct 31.

PMID:
24184384
9.

Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.

Sawano T, Saburi W, Hamura K, Matsui H, Mori H.

FEBS J. 2013 Sep;280(18):4463-73. doi: 10.1111/febs.12408. Epub 2013 Jul 19.

10.

Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.

Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ.

PLoS One. 2013 Jul 2;8(7):e68317. doi: 10.1371/journal.pone.0068317. Print 2013.

11.

An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.

Fox JM, Levine SE, Blanch HW, Clark DS.

Biotechnol J. 2012 Mar;7(3):361-73. doi: 10.1002/biot.201100209.

PMID:
22228702
12.
13.

Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.

Lee WH, Nan H, Kim HJ, Jin YS.

J Biotechnol. 2013 Sep 10;167(3):316-22. doi: 10.1016/j.jbiotec.2013.06.016. Epub 2013 Jul 5.

PMID:
23835155
14.

Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.

Lou J, Dawson KA, Strobel HJ.

Curr Microbiol. 1997 Oct;35(4):221-7.

PMID:
9290062
15.

Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.

Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH.

J Biol Chem. 2014 Jan 31;289(5):2610-9. doi: 10.1074/jbc.M113.533273. Epub 2013 Dec 16.

16.

Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae.

Ha SJ, Kim H, Lin Y, Jang MU, Galazka JM, Kim TJ, Cate JH, Jin YS.

Appl Environ Microbiol. 2013 Mar;79(5):1500-7. doi: 10.1128/AEM.03253-12. Epub 2012 Dec 21.

17.

Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS.

Bioresour Technol. 2013 Dec;149:525-31. doi: 10.1016/j.biortech.2013.09.082. Epub 2013 Sep 27.

PMID:
24140899
19.
20.

Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae.

Aeling KA, Salmon KA, Laplaza JM, Li L, Headman JR, Hutagalung AH, Picataggio S.

J Ind Microbiol Biotechnol. 2012 Nov;39(11):1597-604. doi: 10.1007/s10295-012-1169-y. Epub 2012 Aug 5.

PMID:
22911235

Supplemental Content

Support Center