Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Metabolic engineering of muconic acid production in Saccharomyces cerevisiae.

Curran KA, Leavitt JM, Karim AS, Alper HS.

Metab Eng. 2013 Jan;15:55-66. doi: 10.1016/j.ymben.2012.10.003. Epub 2012 Nov 17.

PMID:
23164574
2.

Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae.

Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E.

Appl Environ Microbiol. 2012 Dec;78(23):8421-30. doi: 10.1128/AEM.01983-12. Epub 2012 Sep 21.

3.

Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.

Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS.

Biotechnol J. 2017 Mar 10. doi: 10.1002/biot.201600687. [Epub ahead of print]

PMID:
28296355
4.

Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

Lin Y, Sun X, Yuan Q, Yan Y.

Metab Eng. 2014 May;23:62-9. doi: 10.1016/j.ymben.2014.02.009. Epub 2014 Feb 25.

PMID:
24583236
5.

Muconic acid production from glucose using enterobactin precursors in Escherichia coli.

Wang J, Zheng P.

J Ind Microbiol Biotechnol. 2015 May;42(5):701-9. doi: 10.1007/s10295-014-1581-6. Epub 2015 Feb 8.

PMID:
25663483
6.

Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid.

Jung HM, Jung MY, Oh MK.

Appl Microbiol Biotechnol. 2015 Jun;99(12):5217-25. doi: 10.1007/s00253-015-6442-3. Epub 2015 Feb 14.

PMID:
25681152
7.

Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V.

Appl Environ Microbiol. 2015 Dec;81(23):8037-43. doi: 10.1128/AEM.01386-15. Epub 2015 Sep 11.

8.

Biotechnological production of muconic acid: current status and future prospects.

Xie NZ, Liang H, Huang RB, Xu P.

Biotechnol Adv. 2014 May-Jun;32(3):615-22. doi: 10.1016/j.biotechadv.2014.04.001. Epub 2014 Apr 18. Review.

PMID:
24751381
9.

A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate.

Sun X, Lin Y, Huang Q, Yuan Q, Yan Y.

Appl Environ Microbiol. 2013 Jul;79(13):4024-30. doi: 10.1128/AEM.00859-13. Epub 2013 Apr 19.

10.

Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ.

Microb Cell Fact. 2015 May 28;14:73. doi: 10.1186/s12934-015-0252-2.

11.

Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone.

Cardenas J, Da Silva NA.

Metab Eng. 2014 Sep;25:194-203. doi: 10.1016/j.ymben.2014.07.008. Epub 2014 Jul 30.

PMID:
25084369
12.

Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.

Averesch NJ, Winter G, Krömer JO.

Microb Cell Fact. 2016 May 26;15:89. doi: 10.1186/s12934-016-0485-8.

13.

Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J.

Metab Eng. 2015 Sep;31:181-8. doi: 10.1016/j.ymben.2015.08.003. Epub 2015 Aug 18.

14.

Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase.

Sun X, Lin Y, Yuan Q, Yan Y.

ChemSusChem. 2014 Sep;7(9):2478-81. doi: 10.1002/cssc.201402092. Epub 2014 Jul 17.

PMID:
25045104
15.

Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.

Suástegui M, Guo W, Feng X, Shao Z.

Biotechnol Bioeng. 2016 Dec;113(12):2676-2685. doi: 10.1002/bit.26037. Epub 2016 Jun 30.

PMID:
27317047
16.

Engineering catechol 1, 2-dioxygenase by design for improving the performance of the cis, cis-muconic acid synthetic pathway in Escherichia coli.

Han L, Liu P, Sun J, Wu Y, Zhang Y, Chen W, Lin J, Wang Q, Ma Y.

Sci Rep. 2015 Aug 26;5:13435. doi: 10.1038/srep13435.

17.

Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

Weber HE, Gottardi M, Brückner C, Oreb M, Boles E, Tripp J.

Appl Environ Microbiol. 2017 May 1;83(10). pii: e03472-16. doi: 10.1128/AEM.03472-16. Print 2017 May 15.

PMID:
28283523
18.

Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.

Zhang H, Li Z, Pereira B, Stephanopoulos G.

Microb Cell Fact. 2015 Sep 15;14:134. doi: 10.1186/s12934-015-0319-0.

19.

De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.

Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM.

Microb Cell Fact. 2012 Dec 8;11:155. doi: 10.1186/1475-2859-11-155.

20.

Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors.

Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, Maranas CD, Shao Z.

Metab Eng. 2017 Jun 15;42:134-144. doi: 10.1016/j.ymben.2017.06.008. [Epub ahead of print]

PMID:
28625755

Supplemental Content

Support Center