Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient.

Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S.

Front Zool. 2012 Nov 19;9(1):32. doi: 10.1186/1742-9994-9-32.

2.

Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea.

Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S.

PLoS One. 2012;7(6):e37848. doi: 10.1371/journal.pone.0037848. Epub 2012 Jun 1.

3.

Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals.

Caroselli E, Prada F, Pasquini L, Marzano FN, Zaccanti F, Falini G, Levy O, Dubinsky Z, Goffredo S.

Zoology (Jena). 2011 Oct;114(5):255-64. doi: 10.1016/j.zool.2011.04.003. Epub 2011 Sep 15.

PMID:
21924883
4.

Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

Airi V, Prantoni S, Calegari M, Lisini Baldi V, Gizzi F, Marchini C, Levy O, Falini G, Dubinsky Z, Goffredo S.

PLoS One. 2017 Feb 3;12(2):e0171051. doi: 10.1371/journal.pone.0171051. eCollection 2017.

5.

Reproduction of an azooxanthellate coral is unaffected by ocean acidification.

Gizzi F, de Mas L, Airi V, Caroselli E, Prada F, Falini G, Dubinsky Z, Goffredo S.

Sci Rep. 2017 Oct 12;7(1):13049. doi: 10.1038/s41598-017-13393-1.

PMID:
29026138
6.

A time-domain nuclear magnetic resonance study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes.

Fantazzini P, Mengoli S, Evangelisti S, Pasquini L, Mariani M, Brizi L, Goffredo S, Caroselli E, Prada F, Falini G, Levy O, Dubinsky Z.

Environ Sci Technol. 2013 Nov 19;47(22):12679-86. doi: 10.1021/es402521b. Epub 2013 Nov 7.

PMID:
24144399
7.

Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient.

Airi V, Gizzi F, Falini G, Levy O, Dubinsky Z, Goffredo S.

PLoS One. 2014 Mar 11;9(3):e91792. doi: 10.1371/journal.pone.0091792. eCollection 2014.

8.

Environmental controls on growth of the massive coral Porites.

Lough JM, Barnes DJ.

J Exp Mar Bio Ecol. 2000 Mar 15;245(2):225-243.

PMID:
10699212
9.

Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

Caroselli E, Falini G, Goffredo S, Dubinsky Z, Levy O.

Front Physiol. 2015 Nov 4;6:317. doi: 10.3389/fphys.2015.00317. eCollection 2015.

10.

Regional decline in growth rates of massive Porites corals in Southeast Asia.

Tanzil JT, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA.

Glob Chang Biol. 2013 Oct;19(10):3011-23. doi: 10.1111/gcb.12279. Epub 2013 Jul 29.

PMID:
23744603
11.

Ecological relevance of skeletal fatty acid concentration and composition in Mediterranean scleractinian corals.

Samorì C, Caroselli E, Prada F, Reggi M, Fermani S, Dubinsky Z, Goffredo S, Falini G.

Sci Rep. 2017 May 16;7(1):1929. doi: 10.1038/s41598-017-02034-2.

12.

A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data.

Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ.

PLoS One. 2010 Jul 8;5(7):e11490. doi: 10.1371/journal.pone.0011490.

13.

The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, Levy O, Dubinsky Z, Falini G.

PLoS One. 2011;6(7):e22338. doi: 10.1371/journal.pone.0022338. Epub 2011 Jul 22.

14.

Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals.

Frankowiak K, Kret S, Mazur M, Meibom A, Kitahara MV, Stolarski J.

PLoS One. 2016 Jan 11;11(1):e0147066. doi: 10.1371/journal.pone.0147066. eCollection 2016.

15.

Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra CR.

PLoS One. 2014 Aug 19;9(8):e103179. doi: 10.1371/journal.pone.0103179. eCollection 2014.

16.

Growth of Western Australian corals in the anthropocene.

Cooper TF, O'Leary RA, Lough JM.

Science. 2012 Feb 3;335(6068):593-6. doi: 10.1126/science.1214570.

17.

The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

Castillo KD, Ries JB, Bruno JF, Westfield IT.

Proc Biol Sci. 2014 Dec 22;281(1797). pii: 20141856. doi: 10.1098/rspb.2014.1856.

18.

Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress.

Aichelman HE, Townsend JE, Courtney TA, Baumann JH, Davies SW, Castillo KD.

Ecol Evol. 2016 Aug 31;6(18):6758-6769. eCollection 2016 Sep.

19.

Mediterranean versus Red sea corals facing climate change, a transcriptome analysis.

Maor-Landaw K, Waldman Ben-Asher H, Karako-Lampert S, Salmon-Divon M, Prada F, Caroselli E, Goffredo S, Falini G, Dubinsky Z, Levy O.

Sci Rep. 2017 Feb 9;7:42405. doi: 10.1038/srep42405.

20.

Repeated loss of coloniality and symbiosis in scleractinian corals.

Barbeitos MS, Romano SL, Lasker HR.

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11877-82. doi: 10.1073/pnas.0914380107. Epub 2010 Jun 14.

Supplemental Content

Support Center