Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection.

Wang A, Al-Kuhlani M, Johnston SC, Ojcius DM, Chou J, Dean D.

Cell Microbiol. 2013 May;15(5):779-94. doi: 10.1111/cmi.12071. Epub 2012 Dec 16.

2.

AP-1 Transcription Factor Serves as a Molecular Switch between Chlamydia pneumoniae Replication and Persistence.

Krämer S, Crauwels P, Bohn R, Radzimski C, Szaszák M, Klinger M, Rupp J, van Zandbergen G.

Infect Immun. 2015 Jul;83(7):2651-60. doi: 10.1128/IAI.03083-14. Epub 2015 Apr 20.

3.

Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

Liu Y, Zhang L, Wang C, Roy S, Shen J.

J Biol Chem. 2016 Jan 22;291(4):1553-63. doi: 10.1074/jbc.M115.681163. Epub 2015 Dec 2.

4.

Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells.

Krüll M, Kramp J, Petrov T, Klucken AC, Hocke AC, Walter C, Schmeck B, Seybold J, Maass M, Ludwig S, Kuipers JG, Suttorp N, Hippenstiel S.

Infect Immun. 2004 Nov;72(11):6615-21.

5.

MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia.

Naiki Y, Michelsen KS, Schröder NW, Alsabeh R, Slepenkin A, Zhang W, Chen S, Wei B, Bulut Y, Wong MH, Peterson EM, Arditi M.

J Biol Chem. 2005 Aug 12;280(32):29242-9. Epub 2005 Jun 17.

6.

GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.

Lin FY, Lin YW, Huang CY, Chang YJ, Tsao NW, Chang NC, Ou KL, Chen TL, Shih CM, Chen YH.

J Immunol. 2011 Apr 1;186(7):4405-14. doi: 10.4049/jimmunol.1003116. Epub 2011 Mar 7.

7.

Chlamydia pneumoniae binds to the lectin-like oxidized LDL receptor for infection of endothelial cells.

Campbell LA, Puolakkainen M, Lee A, Rosenfeld ME, Garrigues HJ, Kuo CC.

Microbes Infect. 2012 Jan;14(1):43-9. doi: 10.1016/j.micinf.2011.08.003. Epub 2011 Aug 30.

8.

Regulation of the MIR155 host gene in physiological and pathological processes.

Elton TS, Selemon H, Elton SM, Parinandi NL.

Gene. 2013 Dec 10;532(1):1-12. doi: 10.1016/j.gene.2012.12.009. Epub 2012 Dec 14. Review.

PMID:
23246696
9.

Expression of chemokines and adhesion molecules in human coronary artery endothelial cells infected with Chlamydia (Chlamydophila) pneumoniae.

Högdahl M, Söderlund G, Kihlström E.

APMIS. 2008 Dec;116(12):1082-8. doi: 10.1111/j.1600-0463.2008.01145.x.

PMID:
19133011
10.

Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae.

Opitz B, Förster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, Suttorp N, Krüll M.

Circ Res. 2005 Feb 18;96(3):319-26. Epub 2005 Jan 13.

11.

In vitro infection and pathogenesis of Chlamydia pneumoniae in endovascular cells.

Quinn TC, Gaydos CA.

Am Heart J. 1999 Nov;138(5 Pt 2):S507-11.

PMID:
10539860
12.

Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis.

Kreutmayer S, Csordas A, Kern J, Maass V, Almanzar G, Offterdinger M, Öllinger R, Maass M, Wick G.

Cell Stress Chaperones. 2013 May;18(3):259-68. doi: 10.1007/s12192-012-0378-7. Epub 2012 Nov 29.

13.

Chlamydophila pneumoniae derived from inclusions late in the infectious cycle induce aponecrosis in human aortic endothelial cells.

Marino J, Stoeckli I, Walch M, Latinovic-Golic S, Sundstroem H, Groscurth P, Ziegler U, Dumrese C.

BMC Microbiol. 2008 Feb 19;8:32. doi: 10.1186/1471-2180-8-32.

14.

Interaction between Chlamydia pneumoniae seropositivity, inflammation and risk factors for atherosclerosis in patients with severe coronary stenosis.

Yavuz MT, Yavuz O, Yazici M, Guler S, Ozhan H, Albayrak S, Coskun A.

Scand J Clin Lab Invest. 2006;66(6):523-34.

PMID:
17000560
15.

Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.

Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P.

J Infect Dis. 2008 Jan 1;197(1):156-62. doi: 10.1086/524142.

PMID:
18171299
16.

Requirement for NF-kappaB in transcriptional activation of monocyte chemotactic protein 1 by Chlamydia pneumoniae in human endothelial cells.

Molestina RE, Miller RD, Lentsch AB, Ramirez JA, Summersgill JT.

Infect Immun. 2000 Jul;68(7):4282-8.

17.

Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo.

Rupp J, Hellwig-Burgel T, Wobbe V, Seitzer U, Brandt E, Maass M.

Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3447-52. Epub 2005 Feb 18.

19.

Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells.

Yang X, Coriolan D, Schultz K, Golenbock DT, Beasley D.

Arterioscler Thromb Vasc Biol. 2005 Nov;25(11):2308-14. Epub 2005 Sep 22.

20.

Expression and distribution of AP-1 transcription factors in the porcine ovary.

Rusovici R, LaVoie HA.

Biol Reprod. 2003 Jul;69(1):64-74. Epub 2003 Feb 19.

PMID:
12606371

Supplemental Content

Support Center