Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus.

Credali A, García-Calderón M, Dam S, Perry J, Díaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Márquez AJ.

Plant Cell Physiol. 2013 Jan;54(1):107-18. doi: 10.1093/pcp/pcs156. Epub 2012 Nov 18.

PMID:
23161854
2.

Structural analysis of K+ dependence in L-asparaginases from Lotus japonicus.

Credali A, Díaz-Quintana A, García-Calderón M, De la Rosa MA, Márquez AJ, Vega JM.

Planta. 2011 Jul;234(1):109-22. doi: 10.1007/s00425-011-1393-0. Epub 2011 Mar 10.

PMID:
21390508
3.

Reassimilation of ammonium in Lotus japonicus.

Betti M, García-Calderón M, Pérez-Delgado CM, Credali A, Pal'ove-Balang P, Estivill G, Repčák M, Vega JM, Galván F, Márquez AJ.

J Exp Bot. 2014 Oct;65(19):5557-66. doi: 10.1093/jxb/eru260. Epub 2014 Jun 19.

PMID:
24948681
4.

A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.

Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry J, Parniske M, Sato S, Tabata S, Smith AM, Wang TL.

Plant Physiol. 2010 Oct;154(2):643-55. doi: 10.1104/pp.110.161844. Epub 2010 Aug 10.

5.

Relationship between asparagine metabolism and protein concentration in soybean seed.

Pandurangan S, Pajak A, Molnar SJ, Cober ER, Dhaubhadel S, Hernández-Sebastià C, Kaiser WM, Nelson RL, Huber SC, Marsolais F.

J Exp Bot. 2012 May;63(8):3173-84. doi: 10.1093/jxb/ers039. Epub 2012 Feb 22.

6.

Elucidation of the specific function of the conserved threonine triad responsible for human L-asparaginase autocleavage and substrate hydrolysis.

Nomme J, Su Y, Lavie A.

J Mol Biol. 2014 Jun 26;426(13):2471-85. doi: 10.1016/j.jmb.2014.04.016. Epub 2014 Apr 22.

7.

Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine.

Ivanov A, Kameka A, Pajak A, Bruneau L, Beyaert R, Hernández-Sebastià C, Marsolais F.

Amino Acids. 2012 Jun;42(6):2307-18. doi: 10.1007/s00726-011-0973-4. Epub 2011 Jul 29.

PMID:
21800258
8.

The proteome of seed development in the model legume Lotus japonicus.

Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thøgersen IB, Enghild JJ, Stougaard J.

Plant Physiol. 2009 Mar;149(3):1325-40. doi: 10.1104/pp.108.133405. Epub 2009 Jan 7.

9.

Combined N-glycome and N-glycoproteome analysis of the Lotus japonicus seed globulin fraction shows conservation of protein structure and glycosylation in legumes.

Dam S, Thaysen-Andersen M, Stenkjær E, Lorentzen A, Roepstorff P, Packer NH, Stougaard J.

J Proteome Res. 2013 Jul 5;12(7):3383-92. doi: 10.1021/pr400224s. Epub 2013 Jun 25.

PMID:
23799247
10.

Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme.

Gervais D, Foote N.

Mol Biotechnol. 2014 Oct;56(10):865-77. doi: 10.1007/s12033-014-9766-9.

PMID:
24870616
11.

A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus.

Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL.

J Exp Bot. 2009;60(12):3353-65. doi: 10.1093/jxb/erp169. Epub 2009 May 27.

12.

Proteome analysis of pod and seed development in the model legume Lotus japonicus.

Nautrup-Pedersen G, Dam S, Laursen BS, Siegumfeldt AL, Nielsen K, Goffard N, Stærfeldt HH, Friis C, Sato S, Tabata S, Lorentzen A, Roepstorff P, Stougaard J.

J Proteome Res. 2010 Nov 5;9(11):5715-26. doi: 10.1021/pr100511u. Epub 2010 Sep 29.

PMID:
20831161
13.

Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus.

Klein MA, Grusak MA.

Genome. 2009 Aug;52(8):677-91. doi: 10.1139/g09-039.

PMID:
19767898
14.

crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus.

Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, Murooka Y.

Plant Physiol. 2003 Mar;131(3):1054-63.

15.

TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase.

Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL.

Plant Physiol. 2007 Jun;144(2):806-20. Epub 2007 Apr 27.

17.

New nodulation mutants responsible for infection thread development in Lotus japonicus.

Yano K, Tansengco ML, Hio T, Higashi K, Murooka Y, Imaizumi-Anraku H, Kawaguchi M, Hayashi M.

Mol Plant Microbe Interact. 2006 Jul;19(7):801-10.

18.

Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.

Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, Motawia MS, Olsen CE, Wang TL, Martin C, Rook F.

Plant Cell. 2010 May;22(5):1605-19. doi: 10.1105/tpc.109.073502. Epub 2010 May 7.

19.

Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.

Chen W, Li X, Tian L, Wu P, Li M, Jiang H, Chen Y, Wu G.

J Integr Plant Biol. 2014 Nov;56(11):1034-41. doi: 10.1111/jipb.12211. Epub 2014 Jun 19.

PMID:
24797909
20.

CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus.

Reid DE, Heckmann AB, Novák O, Kelly S, Stougaard J.

Plant Physiol. 2016 Feb;170(2):1060-74. doi: 10.1104/pp.15.00650. Epub 2015 Dec 7.

Supplemental Content

Support Center