Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.

Kuo JT, Kim BJ, Hara SA, Lee CD, Gutierrez CA, Hoang TQ, Meng E.

Lab Chip. 2013 Feb 21;13(4):554-61. doi: 10.1039/c2lc40935f.

PMID:
23160191
2.

3D Parylene sheath neural probe for chronic recordings.

Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E.

J Neural Eng. 2013 Aug;10(4):045002. doi: 10.1088/1741-2560/10/4/045002. Epub 2013 May 31.

PMID:
23723130
3.

Pre-implantation electrochemical characterization of a Parylene C sheath microelectrode array probe.

Hara SA, Kim BJ, Kuo JT, Lee C, Gutierrez CA, Hoang T, Meng E.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5126-9. doi: 10.1109/EMBC.2012.6347147.

PMID:
23367082
4.

Matrigel coatings for Parylene sheath neural probes.

Lee CD, Hara SA, Yu L, Kuo JT, Kim BJ, Hoang T, Pikov V, Meng E.

J Biomed Mater Res B Appl Biomater. 2016 Feb;104(2):357-68. doi: 10.1002/jbm.b.33390. Epub 2015 Mar 23.

PMID:
25809504
5.

Characterization of parylene C as an encapsulation material for implanted neural prostheses.

Hassler C, von Metzen RP, Ruther P, Stieglitz T.

J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):266-74. doi: 10.1002/jbm.b.31584.

PMID:
20119944
6.

Encapsulation of an integrated neural interface device with Parylene C.

Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F.

IEEE Trans Biomed Eng. 2009 Jan;56(1):23-9. doi: 10.1109/TBME.2008.2002155.

PMID:
19224715
7.

Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

Arreaga-Salas DE, Avendaño-Bolívar A, Simon D, Reit R, Garcia-Sandoval A, Rennaker RL, Voit W.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26614-23. doi: 10.1021/acsami.5b08139. Epub 2015 Nov 25.

PMID:
26575084
8.

Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.

Hara SA, Kim BJ, Kuo JT, Lee CD, Meng E, Pikov V.

J Neural Eng. 2016 Dec;13(6):066020. Epub 2016 Nov 7.

PMID:
27819256
9.

Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.

Castagnola V, Descamps E, Lecestre A, Dahan L, Remaud J, Nowak LG, Bergaud C.

Biosens Bioelectron. 2015 May 15;67:450-7. doi: 10.1016/j.bios.2014.09.004. Epub 2014 Sep 6.

PMID:
25256782
10.

Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation.

Seymour JP, Kipke DR.

Conf Proc IEEE Eng Med Biol Soc. 2006;1:4606-9.

PMID:
17947102
11.

Parylene flexible neural probes integrated with microfluidic channels.

Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T.

Lab Chip. 2005 May;5(5):519-23. Epub 2005 Apr 12.

PMID:
15856088
12.

Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array.

Yoo JM, Negi S, Tathireddy P, Solzbacher F, Song JI, Rieth LW.

J Neurosci Methods. 2013 Apr 30;215(1):78-87. doi: 10.1016/j.jneumeth.2013.02.010. Epub 2013 Feb 28.

13.

Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.

Minnikanti S, Diao G, Pancrazio JJ, Xie X, Rieth L, Solzbacher F, Peixoto N.

Acta Biomater. 2014 Feb;10(2):960-7. doi: 10.1016/j.actbio.2013.10.031. Epub 2013 Nov 1.

PMID:
24185000
14.

A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.

Yi W, Chen C, Feng Z, Xu Y, Zhou C, Masurkar N, Cavanaugh J, Cheng MM.

Nanotechnology. 2015 Mar 27;26(12):125301. doi: 10.1088/0957-4484/26/12/125301. Epub 2015 Mar 6.

PMID:
25742874
15.

Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer.

Kato Y, Saito I, Hoshino T, Suzuki T, Mabuchi K.

Conf Proc IEEE Eng Med Biol Soc. 2006;1:660-3.

PMID:
17946847
16.

Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.

Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY.

J Neural Eng. 2012 Jun;9(3):036001. doi: 10.1088/1741-2560/9/3/036001. Epub 2012 Apr 10.

PMID:
22488106
17.

A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation.

Negi S, Bhandari R, Solzbacher F.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5142-5. doi: 10.1109/EMBC.2012.6347151.

PMID:
23367086
18.

Conducting polymer coated neural recording electrodes.

Harris AR, Morgan SJ, Chen J, Kapsa RM, Wallace GG, Paolini AG.

J Neural Eng. 2013 Feb;10(1):016004. doi: 10.1088/1741-2560/10/1/016004. Epub 2012 Dec 12.

PMID:
23234724
19.

Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation.

Xie X, Rieth L, Williams L, Negi S, Bhandari R, Caldwell R, Sharma R, Tathireddy P, Solzbacher F.

J Neural Eng. 2014 Apr;11(2):026016. doi: 10.1088/1741-2560/11/2/026016. Epub 2014 Mar 24.

20.

Parylene-based encapsulated fluid MEMS sensors.

Meng E, Gutierrez C.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1039-41. doi: 10.1109/IEMBS.2009.5334826.

PMID:
19964947

Supplemental Content

Support Center