Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release.

Luo M, Arentson BW, Srivastava D, Becker DF, Tanner JJ.

Biochemistry. 2012 Dec 18;51(50):10099-108. doi: 10.1021/bi301312f. Epub 2012 Dec 5.

2.

Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.

Zhang M, White TA, Schuermann JP, Baban BA, Becker DF, Tanner JJ.

Biochemistry. 2004 Oct 5;43(39):12539-48.

3.
4.

Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.

White TA, Krishnan N, Becker DF, Tanner JJ.

J Biol Chem. 2007 May 11;282(19):14316-27. Epub 2007 Mar 7.

5.

Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).

Moxley MA, Sanyal N, Krishnan N, Tanner JJ, Becker DF.

J Biol Chem. 2014 Feb 7;289(6):3639-51. doi: 10.1074/jbc.M113.523704. Epub 2013 Dec 18.

6.

Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.

Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF.

Biochemistry. 2007 Jan 16;46(2):483-91.

7.

Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.

Moxley MA, Becker DF.

Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.

8.

Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.

Moxley MA, Zhang L, Christgen S, Tanner JJ, Becker DF.

Biochemistry. 2017 Jun 20;56(24):3078-3088. doi: 10.1021/acs.biochem.7b00046. Epub 2017 Jun 8.

PMID:
28558236
9.

A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.

Ostrander EL, Larson JD, Schuermann JP, Tanner JJ.

Biochemistry. 2009 Feb 10;48(5):951-9. doi: 10.1021/bi802094k.

10.

Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.

Baban BA, Vinod MP, Tanner JJ, Becker DF.

Biochim Biophys Acta. 2004 Sep 1;1701(1-2):49-59.

PMID:
15450175
11.

First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.

Sanyal N, Arentson BW, Luo M, Tanner JJ, Becker DF.

J Biol Chem. 2015 Jan 23;290(4):2225-34. doi: 10.1074/jbc.M114.625483. Epub 2014 Dec 9.

12.

Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.

Zhu W, Becker DF.

Biochemistry. 2003 May 13;42(18):5469-77.

PMID:
12731889
14.

Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.

White TA, Johnson WH Jr, Whitman CP, Tanner JJ.

Biochemistry. 2008 May 20;47(20):5573-80. doi: 10.1021/bi800055w. Epub 2008 Apr 22.

15.

Kinetic and isotopic characterization of L-proline dehydrogenase from Mycobacterium tuberculosis.

Serrano H, Blanchard JS.

Biochemistry. 2013 Jul 23;52(29):5009-15. doi: 10.1021/bi400338f. Epub 2013 Jul 8.

17.

L-proline dehydrogenases in hyperthermophilic archaea: distribution, function, structure, and application.

Kawakami R, Satomura T, Sakuraba H, Ohshima T.

Appl Microbiol Biotechnol. 2012 Jan;93(1):83-93. doi: 10.1007/s00253-011-3682-8. Epub 2011 Nov 17. Review.

PMID:
22089387
20.

Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.

Arentson BW, Luo M, Pemberton TA, Tanner JJ, Becker DF.

Biochemistry. 2014 Aug 12;53(31):5150-61. doi: 10.1021/bi5007404. Epub 2014 Jul 30.

Supplemental Content

Support Center