Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation.

Zheng X, Xie C.

J Math Biol. 2014 Jan;68(1-2):57-80. doi: 10.1007/s00285-012-0624-8. Epub 2012 Nov 13.

PMID:
23149501
2.
3.

Continuous and discrete mathematical models of tumor-induced angiogenesis.

Anderson AR, Chaplain MA.

Bull Math Biol. 1998 Sep;60(5):857-99.

PMID:
9739618
4.

Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.

Raghu R, Vignon-Clementel IE, Figueroa CA, Taylor CA.

J Biomech Eng. 2011 Aug;133(8):081003. doi: 10.1115/1.4004532.

PMID:
21950896
5.

Numerical simulation of blood flow through a capillary using a non-linear viscoelastic model.

Shariatkhah A, Norouzi M, Nobari MR.

Clin Hemorheol Microcirc. 2016;62(2):109-21. doi: 10.3233/CH-151955.

PMID:
26410863
6.

Mathematical modelling of angiogenesis.

Chaplain MA.

J Neurooncol. 2000 Oct-Nov;50(1-2):37-51. Review.

PMID:
11245280
7.

Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.

McDougall SR, Anderson AR, Chaplain MA, Sherratt JA.

Bull Math Biol. 2002 Jul;64(4):673-702.

PMID:
12216417
8.

Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.

Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M.

Bull Math Biol. 2001 Sep;63(5):801-63. Erratum in: Bull Math Biol 2002 Mar;64(2):423.

PMID:
11565406
9.

Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.

Zhou C, Yue P, Feng JJ.

Ann Biomed Eng. 2007 May;35(5):766-80. Epub 2007 Mar 23.

PMID:
17380390
10.

Fluid exchange in skeletal muscle with viscoelastic blood vessels.

Lee J, Salathé EP, Schmid-Schönbein GW.

Am J Physiol. 1987 Dec;253(6 Pt 2):H1548-56.

PMID:
3425754
11.
13.

Modeling bacterial clearance using stochastic-differential equations.

Atalla A, Jeremic A.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:746-51. doi: 10.1109/IEMBS.2010.5626318.

PMID:
21095901
15.

A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis.

Olsen L, Sherratt JA, Maini PK, Arnold F.

IMA J Math Appl Med Biol. 1997 Dec;14(4):261-81.

PMID:
9415995
16.

Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation.

Vallon M, Rohde F, Janssen KP, Essler M.

Exp Cell Res. 2010 Feb 1;316(3):412-21. doi: 10.1016/j.yexcr.2009.10.013. Epub 2009 Oct 21.

PMID:
19853600
17.

Viscoelastic characterization of soft tissue from dynamic finite element models.

Eskandari H, Salcudean SE, Rohling R, Ohayon J.

Phys Med Biol. 2008 Nov 21;53(22):6569-90. doi: 10.1088/0031-9155/53/22/018. Epub 2008 Oct 31.

PMID:
18978443
18.

HGF-induced capillary morphogenesis of endothelial cells is regulated by Src.

Kanda S, Kanetake H, Miyata Y.

Biochem Biophys Res Commun. 2006 Jun 2;344(2):617-22. Epub 2006 Apr 6.

PMID:
16620780
19.

Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries.

Kornev KG, Neimark AV.

J Colloid Interface Sci. 2003 Jun 1;262(1):253-62.

PMID:
16256602
20.

Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis.

Hernández Vera R, Genové E, Alvarez L, Borrós S, Kamm R, Lauffenburger D, Semino CE.

Tissue Eng Part A. 2009 Jan;15(1):175-85. doi: 10.1089/ten.tea.2007.0314.

Supplemental Content

Support Center