Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Functional specialization of duplicated AP3-like genes in Medicago truncatula.

Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore KS, Yenush L, Beltrán JP, Cañas LA.

Plant J. 2013 Feb;73(4):663-75. doi: 10.1111/tpj.12068. Epub 2012 Dec 31.

2.

Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula.

Benlloch R, Roque E, Ferrándiz C, Cosson V, Caballero T, Penmetsa RV, Beltrán JP, Cañas LA, Ratet P, Madueño F.

Plant J. 2009 Oct;60(1):102-11. doi: 10.1111/j.1365-313X.2009.03939.x. Epub 2009 May 28.

3.

Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia.

Geuten K, Becker A, Kaufmann K, Caris P, Janssens S, Viaene T, Theissen G, Smets E.

Plant J. 2006 Aug;47(4):501-18. Epub 2006 Jul 19.

4.

Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

Roque E, Fares MA, Yenush L, Rochina MC, Wen J, Mysore KS, Gómez-Mena C, Beltrán JP, Cañas LA.

J Exp Bot. 2016 Mar;67(6):1805-17. doi: 10.1093/jxb/erv571. Epub 2016 Jan 15.

5.

Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.

Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER.

Mol Biol Evol. 2007 Feb;24(2):465-81. Epub 2006 Nov 29. Erratum in: Mol Biol Evol. 2010 Nov;27(11):2666.

PMID:
17135333
6.

Functional analyses of genetic pathways controlling petal specification in poppy.

Drea S, Hileman LC, de Martino G, Irish VF.

Development. 2007 Dec;134(23):4157-66. Epub 2007 Oct 24.

7.

The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals.

Su K, Zhao S, Shan H, Kong H, Lu W, Theissen G, Chen Z, Meng Z.

New Phytol. 2008;178(3):544-58. doi: 10.1111/j.1469-8137.2008.02382.x. Epub 2008 Feb 19.

8.

Two euAGAMOUS genes control C-function in Medicago truncatula.

Serwatowska J, Roque E, Gómez-Mena C, Constantin GD, Wen J, Mysore KS, Lund OS, Johansen E, Beltrán JP, Cañas LA.

PLoS One. 2014 Aug 8;9(8):e103770. doi: 10.1371/journal.pone.0103770. eCollection 2014.

9.

Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes.

Benlloch R, d'Erfurth I, Ferrandiz C, Cosson V, Beltrán JP, Cañas LA, Kondorosi A, Madueño F, Ratet P.

Plant Physiol. 2006 Nov;142(3):972-83. Epub 2006 Sep 8.

10.

Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development.

de Martino G, Pan I, Emmanuel E, Levy A, Irish VF.

Plant Cell. 2006 Aug;18(8):1833-45. Epub 2006 Jul 14.

11.

The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth.

Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH.

Plant Cell Physiol. 2011 Sep;52(9):1515-31. doi: 10.1093/pcp/pcr092. Epub 2011 Jul 13.

PMID:
21757456
12.

Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis.

Jing D, Liu Z, Zhang B, Ma J, Han Y, Chen F.

Gene. 2014 Mar 1;537(1):100-7. doi: 10.1016/j.gene.2013.11.076. Epub 2013 Dec 12.

PMID:
24334124
13.

Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'.

Mondragón-Palomino M, Theissen G.

Plant J. 2011 Jun;66(6):1008-19. doi: 10.1111/j.1365-313X.2011.04560.x. Epub 2011 Apr 12.

14.

Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.

Fang ZW, Qi R, Li XF, Liu ZX.

Gene. 2014 Oct 25;550(2):200-6. doi: 10.1016/j.gene.2014.08.029. Epub 2014 Aug 19.

PMID:
25149019
15.

Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage.

Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M.

Plant Cell. 2006 Aug;18(8):1819-32. Epub 2006 Jul 14.

17.

'Living stones' reveal alternative petal identity programs within the core eudicots.

Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE.

Plant J. 2012 Jan;69(2):193-203. doi: 10.1111/j.1365-313X.2011.04797.x. Epub 2011 Nov 23.

18.

The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.

Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T.

Plant Cell. 2004 Mar;16(3):741-54. Epub 2004 Feb 18.

19.

Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.

Liu C, Zhang J, Zhang N, Shan H, Su K, Zhang J, Meng Z, Kong H, Chen Z.

Mol Biol Evol. 2010 Jul;27(7):1598-611. doi: 10.1093/molbev/msq044. Epub 2010 Feb 10.

PMID:
20147438
20.

Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.

Yockteng R, Almeida AM, Morioka K, Alvarez-Buylla ER, Specht CD.

Mol Biol Evol. 2013 Nov;30(11):2401-22. doi: 10.1093/molbev/mst137. Epub 2013 Aug 11.

PMID:
23938867

Supplemental Content

Support Center