Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Identification of gold nanoparticle-resistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity.

Smith MR, Boenzli MG, Hindagolla V, Ding J, Miller JM, Hutchison JE, Greenwood JA, Abeliovich H, Bakalinsky AT.

Appl Environ Microbiol. 2013 Jan;79(2):728-33. doi: 10.1128/AEM.01737-12. Epub 2012 Nov 9.

2.

Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

Kasemets K, Suppi S, Künnis-Beres K, Kahru A.

Chem Res Toxicol. 2013 Mar 18;26(3):356-67. doi: 10.1021/tx300467d. Epub 2013 Feb 14.

PMID:
23339633
3.

A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity.

Zhou X, Arita A, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz AD, Klein CB, Dai W, Begley TJ, Costa M.

Genomics. 2009 Nov;94(5):294-307. doi: 10.1016/j.ygeno.2009.07.003. Epub 2009 Jul 22.

4.

Exposure of the yeast Saccharomyces cerevisiae to functionalized polystyrene latex nanoparticles: influence of surface charge on toxicity.

Nomura T, Miyazaki J, Miyamoto A, Kuriyama Y, Tokumoto H, Konishi Y.

Environ Sci Technol. 2013 Apr 2;47(7):3417-23. doi: 10.1021/es400053x. Epub 2013 Mar 7.

PMID:
23448545
5.

Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance.

Bockhorn J, Balar B, He D, Seitomer E, Copeland PR, Kinzy TG.

Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17682-7. doi: 10.1073/pnas.0805642105. Epub 2008 Nov 11.

6.

Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae.

McCartney RR, Chandrashekarappa DG, Zhang BB, Schmidt MC.

Genetics. 2014 Oct;198(2):635-46. doi: 10.1534/genetics.114.169060. Epub 2014 Aug 12.

7.

Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells.

Barbosa AD, Osório H, Sims KJ, Almeida T, Alves M, Bielawski J, Amorim MA, Moradas-Ferreira P, Hannun YA, Costa V.

Mol Microbiol. 2011 Jul;81(2):515-27. doi: 10.1111/j.1365-2958.2011.07714.x. Epub 2011 Jun 28.

8.

A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.

9.

Involvement of the pleiotropic drug resistance response, protein kinase C signaling, and altered zinc homeostasis in resistance of Saccharomyces cerevisiae to diclofenac.

van Leeuwen JS, Vermeulen NP, Vos JC.

Appl Environ Microbiol. 2011 Sep;77(17):5973-80. doi: 10.1128/AEM.00253-11. Epub 2011 Jul 1.

10.

The chemical genomic portrait of yeast: uncovering a phenotype for all genes.

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G.

Science. 2008 Apr 18;320(5874):362-5. doi: 10.1126/science.1150021.

11.

Genomewide screening for genes associated with gliotoxin resistance and sensitivity in Saccharomyces cerevisiae.

Chamilos G, Lewis RE, Lamaris GA, Albert ND, Kontoyiannis DP.

Antimicrob Agents Chemother. 2008 Apr;52(4):1325-9. doi: 10.1128/AAC.01393-07. Epub 2008 Jan 22.

12.

L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

Cartwright SP, Bill RM, Hipkiss AR.

PLoS One. 2012;7(9):e45006. doi: 10.1371/journal.pone.0045006. Epub 2012 Sep 12.

13.

Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.

Luhe AL, Tan L, Wu J, Zhao H.

Biotechnol Lett. 2011 May;33(5):1007-11. doi: 10.1007/s10529-011-0518-7. Epub 2011 Jan 19.

PMID:
21246255
14.

Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.

PMID:
18416308
15.
16.

Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.

Nishimoto T, Watanabe T, Furuta M, Kataoka M, Kishida M.

Biocontrol Sci. 2016;21(3):179-82. doi: 10.4265/bio.21.179.

19.

Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.

Coste AT, Ramsdale M, Ischer F, Sanglard D.

Microbiology. 2008 May;154(Pt 5):1491-501. doi: 10.1099/mic.0.2007/016063-0.

PMID:
18451058
20.

Yeast stress, aging, and death.

Mazzoni C, Giannattasio S, Winderickx J, Ludovico P.

Oxid Med Cell Longev. 2013;2013:684395. doi: 10.1155/2013/684395. Epub 2013 Dec 2. No abstract available.

Supplemental Content

Support Center