Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Structural insights into the assembly of human translesion polymerase complexes.

Xie W, Yang X, Xu M, Jiang T.

Protein Cell. 2012 Nov;3(11):864-74. doi: 10.1007/s13238-012-2102-x. Epub 2012 Nov 10.

2.

Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.

Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M.

J Biol Chem. 2010 Apr 16;285(16):12299-307. doi: 10.1074/jbc.M109.092403. Epub 2010 Feb 17.

3.

Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis.

Pustovalova Y, Magalhães MT, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM.

Biochemistry. 2016 Apr 5;55(13):2043-53. doi: 10.1021/acs.biochem.5b01282. Epub 2016 Mar 24.

4.

The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ.

Pustovalova Y, Bezsonova I, Korzhnev DM.

FEBS Lett. 2012 Sep 21;586(19):3051-6. doi: 10.1016/j.febslet.2012.07.021. Epub 2012 Jul 22.

5.

The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site.

Hashimoto K, Cho Y, Yang IY, Akagi J, Ohashi E, Tateishi S, de Wind N, Hanaoka F, Ohmori H, Moriya M.

J Biol Chem. 2012 Mar 16;287(12):9613-22. doi: 10.1074/jbc.M111.331728. Epub 2012 Feb 2.

6.

Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

J Biol Chem. 2012 Sep 28;287(40):33847-52. Epub 2012 Aug 2.

7.

Crystallization and X-ray diffraction analysis of the ternary complex of the C-terminal domain of human REV1 in complex with REV7 bound to a REV3 fragment involved in translesion DNA synthesis.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Aug 1;68(Pt 8):962-4. doi: 10.1107/S1744309112032435. Epub 2012 Jul 27.

8.

Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ.

Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P.

J Biol Chem. 2012 Sep 28;287(40):33836-46. Epub 2012 Aug 2.

9.

NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.

Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM.

Biochemistry. 2012 Jul 10;51(27):5506-20. Epub 2012 Jun 28.

10.

REV1 and polymerase ζ facilitate homologous recombination repair.

Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY, Glover TW, Canman CE.

Nucleic Acids Res. 2012 Jan;40(2):682-91. doi: 10.1093/nar/gkr769. Epub 2011 Sep 16.

11.

Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.

Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P.

J Biol Chem. 2012 Jul 27;287(31):26400-8. doi: 10.1074/jbc.M112.380998. Epub 2012 Jun 14.

12.

Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain.

Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L.

Mol Cell Biol. 2005 Nov;25(21):9734-40.

13.
14.

Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites.

Andersen PL, Xu F, Ziola B, McGregor WG, Xiao W.

Mol Biol Cell. 2011 Jul 1;22(13):2373-83. doi: 10.1091/mbc.E10-12-0938. Epub 2011 May 5.

15.

NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.

Pustovalova Y, Maciejewski MW, Korzhnev DM.

J Mol Biol. 2013 Sep 9;425(17):3091-105. doi: 10.1016/j.jmb.2013.05.029. Epub 2013 Jun 7.

PMID:
23747975
16.

REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1.

Chun AC, Kok KH, Jin DY.

Cell Cycle. 2013 Jan 15;12(2):365-78. doi: 10.4161/cc.23214. Epub 2012 Jan 15.

17.

Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links.

Hicks JK, Chute CL, Paulsen MT, Ragland RL, Howlett NG, Guéranger Q, Glover TW, Canman CE.

Mol Cell Biol. 2010 Mar;30(5):1217-30. doi: 10.1128/MCB.00993-09. Epub 2009 Dec 22.

18.

Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.

Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC.

EMBO J. 2003 Dec 15;22(24):6621-30.

19.

Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells.

Akagi J, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F.

DNA Repair (Amst). 2009 May 1;8(5):585-99. doi: 10.1016/j.dnarep.2008.12.006. Epub 2009 Jan 21.

PMID:
19157994
20.

Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.

Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H.

Genes Cells. 2009 Feb;14(2):101-11. doi: 10.1111/j.1365-2443.2008.01255.x. Epub 2009 Jan 6.

Supplemental Content

Support Center