Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 164

1.

Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst.

Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD.

Science. 2012 Dec 7;338(6112):1321-4. doi: 10.1126/science.1227775. Epub 2012 Nov 8.

2.

Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange.

Das A, Han Z, Haghighi MG, Eisenberg R.

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16716-23. doi: 10.1073/pnas.1316755110. Epub 2013 Sep 30.

3.

Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.

Wang JJ, Li ZJ, Li XB, Fan XB, Meng QY, Yu S, Li CB, Li JX, Tung CH, Wu LZ.

ChemSusChem. 2014 May;7(5):1468-75. doi: 10.1002/cssc.201400028. Epub 2014 Apr 1.

PMID:
24692310
4.

Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

Yu S, Li ZJ, Fan XB, Li JX, Zhan F, Li XB, Tao Y, Tung CH, Wu LZ.

ChemSusChem. 2015 Feb;8(4):642-9. doi: 10.1002/cssc.201402885. Epub 2014 Dec 3.

PMID:
25470751
5.

Photocatalytic hydrogen evolution by oleic acid-capped CdS, CdSe, and CdS0.75Se0.25 alloy nanocrystals.

Aslan E, Birinci O, Aljabour A, Ozel F, Akın I, Hatay Patir I, Kus M, Ersoz M.

Chemphyschem. 2014 Sep 15;15(13):2668-71. doi: 10.1002/cphc.201402229. Epub 2014 Jun 12.

PMID:
24925626
6.

Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.

Aldeek F, Mustin C, Balan L, Roques-Carmes T, Fontaine-Aupart MP, Schneider R.

Biomaterials. 2011 Aug;32(23):5459-70. doi: 10.1016/j.biomaterials.2011.04.019. Epub 2011 May 5.

PMID:
21549423
7.

Fuel from water: the photochemical generation of hydrogen from water.

Han Z, Eisenberg R.

Acc Chem Res. 2014 Aug 19;47(8):2537-44. doi: 10.1021/ar5001605. Epub 2014 Jun 26.

PMID:
24967506
8.

Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics.

Liu C, Qiu F, Peterson JJ, Krauss TD.

J Phys Chem B. 2015 Jun 18;119(24):7349-57. doi: 10.1021/jp510935w. Epub 2015 Jan 12.

PMID:
25523941
9.

Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots.

Pons T, Medintz IL, Farrell D, Wang X, Grimes AF, English DS, Berti L, Mattoussi H.

Small. 2011 Jul 18;7(14):2101-8. doi: 10.1002/smll.201100802. Epub 2011 Jun 28.

PMID:
21710484
10.

Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water.

Dong Y, Chen Y, Jiang P, Wang G, Wu X, Wu R, Zhang C.

Chem Asian J. 2015 Aug;10(8):1660-7. doi: 10.1002/asia.201500374. Epub 2015 Jun 24.

PMID:
26011705
11.

Photophysical properties of biologically compatible CdSe quantum dot structures.

Kloepfer JA, Bradforth SE, Nadeau JL.

J Phys Chem B. 2005 May 26;109(20):9996-10003.

PMID:
16852208
12.

Fabrication of water soluble and biocompatible CdSe nanoparticles in apoferritin with the aid of EDTA.

Xing R, Wang X, Yan L, Zhang C, Yang Z, Wang X, Guo Z.

Dalton Trans. 2009 Mar 14;(10):1710-3. doi: 10.1039/b900256c. Epub 2009 Jan 23.

PMID:
19240903
13.

Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin.

Vannoy CH, Leblanc RM.

J Phys Chem B. 2010 Aug 26;114(33):10881-8. doi: 10.1021/jp1045904.

PMID:
20681557
14.

Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.

Li ZJ, Fan XB, Li XB, Li JX, Ye C, Wang JJ, Yu S, Li CB, Gao YJ, Meng QY, Tung CH, Wu LZ.

J Am Chem Soc. 2014 Jun 11;136(23):8261-8. doi: 10.1021/ja5047236. Epub 2014 May 29.

PMID:
24835886
15.

Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles.

Harris C, Kamat PV.

ACS Nano. 2010 Dec 28;4(12):7321-30. doi: 10.1021/nn102564x. Epub 2010 Nov 11.

PMID:
21069993
16.

Calixarene-coated water-soluble CdSe-ZnS semiconductor quantum dots that are highly fluorescent and stable in aqueous solution.

Jin T, Fujii F, Sakata H, Tamura M, Kinjo M.

Chem Commun (Camb). 2005 Jun 14;(22):2829-31. Epub 2005 Apr 21.

PMID:
15928772
17.

Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light.

Zhang W, Wang Y, Wang Z, Zhong Z, Xu R.

Chem Commun (Camb). 2010 Oct 28;46(40):7631-3. doi: 10.1039/c0cc01562h. Epub 2010 Sep 17.

PMID:
20848040
18.

Copper(I) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production.

Peng Y, Shang L, Cao Y, Waterhouse GI, Zhou C, Bian T, Wu LZ, Tung CH, Zhang T.

Chem Commun (Camb). 2015 Aug 14;51(63):12556-9. doi: 10.1039/c5cc04739k.

PMID:
26152850
19.

Neutral nickel(II) phthalocyanine as a stable catalyst for visible-light-driven hydrogen evolution from water.

Yuan YJ, Tu JR, Lu HW, Yu ZT, Fan XX, Zou ZG.

Dalton Trans. 2016 Jan 28;45(4):1359-63. doi: 10.1039/c5dt04311e.

PMID:
26743686
20.

Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.

Dutta A, Lense S, Hou J, Engelhard MH, Roberts JA, Shaw WJ.

J Am Chem Soc. 2013 Dec 11;135(49):18490-6. doi: 10.1021/ja407826d. Epub 2013 Nov 27.

PMID:
24206187

Supplemental Content

Support Center