Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

5-Carboxylcytosine is localized to euchromatic regions in the nuclei of follicular cells in axolotl ovary.

Alioui A, Wheldon LM, Abakir A, Ferjentsik Z, Johnson AD, Ruzov A.

Nucleus. 2012 Nov-Dec;3(6):565-9. doi: 10.4161/nucl.22799. Epub 2012 Nov 1.

2.

Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development.

Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P.

Cell Res. 2011 Sep;21(9):1332-42. doi: 10.1038/cr.2011.113. Epub 2011 Jul 12.

3.

Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.

Maiti A, Drohat AC.

J Biol Chem. 2011 Oct 14;286(41):35334-8. doi: 10.1074/jbc.C111.284620. Epub 2011 Aug 23.

4.

Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates.

Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T.

PLoS One. 2010 Dec 23;5(12):e15367. doi: 10.1371/journal.pone.0015367.

5.

Chromosome-wide regulation of euchromatin-specific 5mC to 5hmC conversion in mouse ES cells and female human somatic cells.

Kubiura M, Okano M, Kimura H, Kawamura F, Tada M.

Chromosome Res. 2012 Oct;20(7):837-48. doi: 10.1007/s10577-012-9317-9. Epub 2012 Oct 31.

6.

Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells.

Wheldon LM, Abakir A, Ferjentsik Z, Dudnakova T, Strohbuecker S, Christie D, Dai N, Guan S, Foster JM, Corrêa IR Jr, Loose M, Dixon JE, Sottile V, Johnson AD, Ruzov A.

Cell Rep. 2014 Jun 12;7(5):1353-61. doi: 10.1016/j.celrep.2014.05.003. Epub 2014 May 29.

7.

Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives.

Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M.

Cell. 2013 Feb 28;152(5):1146-59. doi: 10.1016/j.cell.2013.02.004. Epub 2013 Feb 21.

8.

Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain.

Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, Fernandes C, Cooper J, Lovestone S, Schalkwyk L, Mill J, Lunnon K.

Neurobiol Aging. 2014 Aug;35(8):1850-4. doi: 10.1016/j.neurobiolaging.2014.02.002. Epub 2014 Feb 6.

9.

5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy.

Vasanthakumar A, Godley LA.

Cancer Genet. 2015 May;208(5):167-77. doi: 10.1016/j.cancergen.2015.02.009. Epub 2015 Mar 3. Review. Erratum in: Cancer Genet. 2016 Apr;209(4):177.

PMID:
25892122
10.

Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing.

Xing XW, Liu YL, Vargas M, Wang Y, Feng YQ, Zhou X, Yuan BF.

PLoS One. 2013 Sep 16;8(9):e72993. doi: 10.1371/journal.pone.0072993. eCollection 2013.

11.

Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence.

Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X, Cheng X.

Genes Dev. 2014 Oct 15;28(20):2304-13. doi: 10.1101/gad.250746.114. Epub 2014 Sep 25.

12.
13.

Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine.

Münzel M, Lischke U, Stathis D, Pfaffeneder T, Gnerlich FA, Deiml CA, Koch SC, Karaghiosoff K, Carell T.

Chemistry. 2011 Dec 2;17(49):13782-8. doi: 10.1002/chem.201102782. Epub 2011 Nov 8.

PMID:
22069110
14.

Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases.

Liutkevičiūtė Z, Kriukienė E, Ličytė J, Rudytė M, Urbanavičiūtė G, Klimašauskas S.

J Am Chem Soc. 2014 Apr 23;136(16):5884-7. doi: 10.1021/ja5019223. Epub 2014 Apr 14.

PMID:
24716540
15.

Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA.

Maiti A, Michelson AZ, Armwood CJ, Lee JK, Drohat AC.

J Am Chem Soc. 2013 Oct 23;135(42):15813-22. doi: 10.1021/ja406444x. Epub 2013 Oct 7.

16.

Integrated detection of both 5-mC and 5-hmC by high-throughput tag sequencing technology highlights methylation reprogramming of bivalent genes during cellular differentiation.

Gao F, Xia Y, Wang J, Luo H, Gao Z, Han X, Zhang J, Huang X, Yao Y, Lu H, Yi N, Zhou B, Lin Z, Wen B, Zhang X, Yang H, Wang J.

Epigenetics. 2013 Apr;8(4):421-30. doi: 10.4161/epi.24280. Epub 2013 Mar 15.

17.

Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.

Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P.

PLoS Genet. 2011 Jun;7(6):e1002154. doi: 10.1371/journal.pgen.1002154. Epub 2011 Jun 23.

18.

Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y.

Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.

19.

Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.

Wu H, Zhang Y.

Genes Dev. 2011 Dec 1;25(23):2436-52. doi: 10.1101/gad.179184.111. Review.

20.

Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability.

Ngo TT, Yoo J, Dai Q, Zhang Q, He C, Aksimentiev A, Ha T.

Nat Commun. 2016 Feb 24;7:10813. doi: 10.1038/ncomms10813.

Supplemental Content

Support Center