Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii.

James GO, Hocart CH, Hillier W, Price GD, Djordjevic MA.

Bioresour Technol. 2013 Jan;127:441-7. doi: 10.1016/j.biortech.2012.09.090. Epub 2012 Oct 11.

PMID:
23138068
2.

Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation.

James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA.

Bioresour Technol. 2011 Feb;102(3):3343-51. doi: 10.1016/j.biortech.2010.11.051. Epub 2010 Nov 16.

PMID:
21146403
3.

Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes.

Çakmak ZE, Ölmez TT, Çakmak T, Menemen Y, Tekinay T.

Bioresour Technol. 2014 Mar;155:379-87. doi: 10.1016/j.biortech.2013.12.093. Epub 2013 Dec 31.

PMID:
24472680
4.

Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

Karpagam R, Preeti R, Ashokkumar B, Varalakshmi P.

Ecotoxicol Environ Saf. 2015 Nov;121:253-7. doi: 10.1016/j.ecoenv.2015.03.015. Epub 2015 Mar 31.

PMID:
25838071
5.

Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.

Iwai M, Ikeda K, Shimojima M, Ohta H.

Plant Biotechnol J. 2014 Aug;12(6):808-19. doi: 10.1111/pbi.12210. Epub 2014 Jun 9.

6.

Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.

Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T.

Biotechnol Bioeng. 2012 Aug;109(8):1947-57. doi: 10.1002/bit.24474. Epub 2012 Mar 2.

PMID:
22383222
7.

Algal swimming velocities signal fatty acid accumulation.

Hansen TJ, Hondzo M, Mashek MT, Mashek DG, Lefebvre PA.

Biotechnol Bioeng. 2013 Jan;110(1):143-52. doi: 10.1002/bit.24619. Epub 2012 Aug 10.

PMID:
22833390
8.

Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

Wase N, Black PN, Stanley BA, DiRusso CC.

J Proteome Res. 2014 Mar 7;13(3):1373-96. doi: 10.1021/pr400952z. Epub 2014 Feb 26.

PMID:
24528286
9.

Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii.

Ramanan R, Kim BH, Cho DH, Ko SR, Oh HM, Kim HS.

FEBS Lett. 2013 Feb 14;587(4):370-7. doi: 10.1016/j.febslet.2012.12.020. Epub 2013 Jan 10.

10.

Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

Hung CH, Kanehara K, Nakamura Y.

Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1282-93. doi: 10.1016/j.bbalip.2016.04.001. Epub 2016 Apr 7.

PMID:
27060488
11.

Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.

Liu B, Vieler A, Li C, Jones AD, Benning C.

Bioresour Technol. 2013 Oct;146:310-6. doi: 10.1016/j.biortech.2013.07.088. Epub 2013 Jul 25.

PMID:
23948268
12.

Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW.

Appl Biochem Biotechnol. 2013 Nov;171(5):1128-42. doi: 10.1007/s12010-013-0386-9. Epub 2013 Jul 24.

PMID:
23881782
13.

Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.

Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H.

Phytochemistry. 2012 Mar;75:50-9. doi: 10.1016/j.phytochem.2011.12.007. Epub 2012 Jan 5.

PMID:
22226037
14.

Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions.

Poerschmann J, Spijkerman E, Langer U.

Microb Ecol. 2004 Jul;48(1):78-89. Epub 2004 Apr 27.

PMID:
15107953
15.

Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.

Philipps G, Happe T, Hemschemeier A.

Planta. 2012 Apr;235(4):729-45. doi: 10.1007/s00425-011-1537-2. Epub 2011 Oct 22.

PMID:
22020754
16.

Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii.

Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C.

Plant Cell Physiol. 2012 Aug;53(8):1380-90. doi: 10.1093/pcp/pcs082. Epub 2012 May 28.

PMID:
22642988
17.

Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.

Torri C, Samorì C, Adamiano A, Fabbri D, Faraloni C, Torzillo G.

Bioresour Technol. 2011 Sep;102(18):8707-13. doi: 10.1016/j.biortech.2011.01.064. Epub 2011 Feb 1.

PMID:
21345670
18.

Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii.

Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U.

Eukaryot Cell. 2009 Dec;8(12):1856-68. doi: 10.1128/EC.00272-09. Epub 2009 Oct 30.

19.
20.

Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.

Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G.

BMC Biotechnol. 2011 Jan 21;11:7. doi: 10.1186/1472-6750-11-7.

Supplemental Content

Support Center