Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water.

Jiang W, Chen X, Niu Y, Pan B.

J Hazard Mater. 2012 Dec;243:319-25. doi: 10.1016/j.jhazmat.2012.10.036. Epub 2012 Oct 26.

PMID:
23131498
2.

Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal.

Jiang W, Chen X, Pan B, Zhang Q, Teng L, Chen Y, Liu L.

J Hazard Mater. 2014 Jul 15;276:295-301. doi: 10.1016/j.jhazmat.2014.05.032. Epub 2014 May 22.

PMID:
24910907
3.

Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal.

Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L.

ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3421-6. doi: 10.1021/am405562c. Epub 2014 Feb 21.

PMID:
24524391
4.

Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater.

Guo X, Chen F.

Environ Sci Technol. 2005 Sep 1;39(17):6808-18.

PMID:
16190243
5.

A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution.

Wu Q, Feng C, Wang C, Wang Z.

Colloids Surf B Biointerfaces. 2013 Jan 1;101:210-4. doi: 10.1016/j.colsurfb.2012.05.036. Epub 2012 Jun 7.

PMID:
23010021
6.

Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

Yu L, Peng X, Ni F, Li J, Wang D, Luan Z.

J Hazard Mater. 2013 Feb 15;246-247:10-7. doi: 10.1016/j.jhazmat.2012.12.007. Epub 2012 Dec 10.

PMID:
23276789
7.

Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles.

Jin Y, Liu F, Tong M, Hou Y.

J Hazard Mater. 2012 Aug 15;227-228:461-8. doi: 10.1016/j.jhazmat.2012.05.004. Epub 2012 May 9.

PMID:
22703733
8.

Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.

Shan C, Tong M.

Water Res. 2013 Jun 15;47(10):3411-21. doi: 10.1016/j.watres.2013.03.035. Epub 2013 Mar 27.

PMID:
23587265
9.

Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

Guo L, Ye P, Wang J, Fu F, Wu Z.

J Hazard Mater. 2015 Nov 15;298:28-35. doi: 10.1016/j.jhazmat.2015.05.011. Epub 2015 May 14.

PMID:
26001621
10.

Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions.

Sahu RC, Patel R, Ray BC.

J Hazard Mater. 2010 Jul 15;179(1-3):1007-13. doi: 10.1016/j.jhazmat.2010.03.105. Epub 2010 Mar 31.

PMID:
20456859
11.

Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.

Wu X, Tan X, Yang S, Wen T, Guo H, Wang X, Xu A.

Water Res. 2013 Aug 1;47(12):4159-68. doi: 10.1016/j.watres.2012.11.056. Epub 2013 Mar 27.

PMID:
23582669
12.

Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles.

Zhao X, Wang J, Wu F, Wang T, Cai Y, Shi Y, Jiang G.

J Hazard Mater. 2010 Jan 15;173(1-3):102-9. doi: 10.1016/j.jhazmat.2009.08.054. Epub 2009 Aug 20.

PMID:
19747775
13.

Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties.

Zhang Y, Yang M, Dou XM, He H, Wang DS.

Environ Sci Technol. 2005 Sep 15;39(18):7246-53.

PMID:
16201655
14.

Facile synthesis of yeast cross-linked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V).

Rajesh Kumar S, Jayavignesh V, Selvakumar R, Swaminathan K, Ponpandian N.

J Colloid Interface Sci. 2016 Dec 15;484:183-195. doi: 10.1016/j.jcis.2016.08.081. Epub 2016 Aug 31.

PMID:
27610473
15.

Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud.

Akin I, Arslan G, Tor A, Ersoz M, Cengeloglu Y.

J Hazard Mater. 2012 Oct 15;235-236:62-8. doi: 10.1016/j.jhazmat.2012.06.024. Epub 2012 Jun 23.

PMID:
22846216
16.

[Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron].

Zhu HJ, Jia YF, Yao SH, Wu X, Wang SY.

Huan Jing Ke Xue. 2009 Dec;30(12):3562-7. Chinese.

PMID:
20187387
17.

Removal of arsenate from water by using an Fe-Ce oxide adsorbent: effects of coexistent fluoride and phosphate.

Zhang Y, Dou XM, Yang M, He H, Jing CY, Wu ZY.

J Hazard Mater. 2010 Jul 15;179(1-3):208-14. doi: 10.1016/j.jhazmat.2010.02.081. Epub 2010 Mar 3.

PMID:
20303658
18.

Removal of arsenic from water by supported nano zero-valent iron on activated carbon.

Zhu H, Jia Y, Wu X, Wang H.

J Hazard Mater. 2009 Dec 30;172(2-3):1591-6. doi: 10.1016/j.jhazmat.2009.08.031. Epub 2009 Aug 15.

PMID:
19733972
19.

Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water.

Zhang K, Dwivedi V, Chi C, Wu J.

J Hazard Mater. 2010 Oct 15;182(1-3):162-8. doi: 10.1016/j.jhazmat.2010.06.010. Epub 2010 Jun 9.

PMID:
20580161
20.

Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.

Kilianová M, Prucek R, Filip J, Kolařík J, Kvítek L, Panáček A, Tuček J, Zbořil R.

Chemosphere. 2013 Nov;93(11):2690-7. doi: 10.1016/j.chemosphere.2013.08.071. Epub 2013 Sep 17.

PMID:
24054133

Supplemental Content

Support Center