Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

Slobodskyy T, Schroth P, Grigoriev D, Minkevich AA, Hu DZ, Schaadt DM, Baumbach T.

Rev Sci Instrum. 2012 Oct;83(10):105112. doi: 10.1063/1.4759495.

PMID:
23126809
2.

An ultra-compact, high-throughput molecular beam epitaxy growth system.

Baker AA, Braun W, Gassler G, Rembold S, Fischer A, Hesjedal T.

Rev Sci Instrum. 2015 Apr;86(4):043901. doi: 10.1063/1.4917009.

PMID:
25933865
3.

An ultrahigh vacuum system for in situ studies of thin films and nanostructures by nuclear resonance scattering of synchrotron radiation.

Stankov S, Rüffer R, Sladecek M, Rennhofer M, Sepiol B, Vogl G, Spiridis N, Slezak T, Korecki J.

Rev Sci Instrum. 2008 Apr;79(4):045108. doi: 10.1063/1.2906321.

PMID:
18447553
4.

The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.

Cantelli V, Geaymond O, Ulrich O, Zhou T, Blanc N, Renaud G.

J Synchrotron Radiat. 2015 May;22(3):688-700. doi: 10.1107/S1600577515001605. Epub 2015 Apr 9.

PMID:
25931085
5.

Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.

Morales-Cortés H, Mejía-García C, Méndez-García VH, Vázquez-Cortés D, Rojas-Ramírez JS, Contreras-Guerrero R, Ramírez-López M, Martínez-Velis I, López-López M.

Nanotechnology. 2010 Apr 2;21(13):134012. doi: 10.1088/0957-4484/21/13/134012. Epub 2010 Mar 8.

PMID:
20208110
6.

Portable chamber for the study of UHV prepared electrochemical interfaces by hard x-ray diffraction.

Renner FU, Gründer Y, Zegenhagen J.

Rev Sci Instrum. 2007 Mar;78(3):033903.

PMID:
17411191
7.

In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

Lee JH, Tung IC, Chang SH, Bhattacharya A, Fong DD, Freeland JW, Hong H.

Rev Sci Instrum. 2016 Jan;87(1):013901. doi: 10.1063/1.4939100.

PMID:
26827327
8.

A compact molecular-beam epitaxy apparatus for in situ soft X-ray magnetic circular dichroism experiments.

Koide T, Shidara T, Nakajima N, Miyauchi H, Fukutani H.

J Synchrotron Radiat. 1998 May 1;5(Pt 3):1038-40. Epub 1998 May 1.

PMID:
15263737
9.

Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system.

Rutkowski MM, McNicholas KM, Zeng Z, Brillson LJ.

Rev Sci Instrum. 2013 Jun;84(6):065105. doi: 10.1063/1.4804195.

PMID:
23822376
10.

Multi-use high/low-temperature and pressure compatible portable chamber for in situ grazing-incidence X-ray scattering studies.

Ferrer P, Rubio-Zuazo J, Heyman C, Esteban-Betegón F, Castro GR.

J Synchrotron Radiat. 2013 May;20(Pt 3):474-81. doi: 10.1107/S0909049513002598. Epub 2013 Mar 1.

PMID:
23592627
11.

A molecular beam epitaxy facility for in situ neutron scattering.

Dura JA, LaRock J.

Rev Sci Instrum. 2009 Jul;80(7):073906. doi: 10.1063/1.3169506.

PMID:
19655964
12.

Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique.

Chen HJ, Yang DL, Huang TW, Yu IS.

Nanoscale Res Lett. 2016 Dec;11(1):241. doi: 10.1186/s11671-016-1455-0. Epub 2016 May 4.

13.

Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.

Yu IS, Chang CP, Yang CP, Lin CT, Ma YR, Chen CC.

Nanoscale Res Lett. 2014 Dec 17;9(1):682. doi: 10.1186/1556-276X-9-682. eCollection 2014.

14.

A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy.

Couet S, Diederich T, Schlage K, Röhlsberger R.

Rev Sci Instrum. 2008 Sep;79(9):093908. doi: 10.1063/1.2982059.

PMID:
19044429
15.

Effects of shutter transients in molecular beam epitaxy.

Gozu S, Mozume T, Kuwatsuka H, Ishikawa H.

Nanoscale Res Lett. 2012 Nov 12;7(1):620. doi: 10.1186/1556-276X-7-620.

16.

An ultrahigh-vacuum goniometer for in situ soft X-ray standing-wave analysis of semiconductor surfaces.

Sugiyama M, Maeyama S.

J Synchrotron Radiat. 1998 May 1;5(Pt 3):1029-31. Epub 1998 May 1.

PMID:
15263734
17.

Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.

Thomas J, Schumann J, Vinzelberg H, Arushanov E, Engelhard R, Schmidt OG, Gemming T.

Nanotechnology. 2009 Jun 10;20(23):235604. doi: 10.1088/0957-4484/20/23/235604. Epub 2009 May 19.

PMID:
19451681
18.

Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED.

Arapkina LV, Yuryev VA, Chizh KV, Shevlyuga VM, Storojevyh MS, Krylova LA.

Nanoscale Res Lett. 2011 Mar 14;6(1):218. doi: 10.1186/1556-276X-6-218.

19.

Ultrahigh-vacuum facility for high-resolution grazing-angle X-ray diffraction at a vertical wiggler source of synchrotron radiation.

Sakata O, Tanaka Y, Nikolaenko AM, Hashizume H.

J Synchrotron Radiat. 1998 Jul 1;5(Pt 4):1222-6.

PMID:
16687825
20.

Portable laser-heating stand for synchrotron applications.

Boehler R, Musshoff HG, Ditz R, Aquilanti G, Trapananti A.

Rev Sci Instrum. 2009 Apr;80(4):045103. doi: 10.1063/1.3115183.

PMID:
19405687

Supplemental Content

Support Center