Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2.

Inamori K, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP.

Glycobiology. 2013 Mar;23(3):295-302. doi: 10.1093/glycob/cws152. Epub 2012 Nov 2.

2.

Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues.

Inamori K, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP.

J Biol Chem. 2014 Oct 10;289(41):28138-48. doi: 10.1074/jbc.M114.597831. Epub 2014 Aug 19.

3.

LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE.

Ashikov A, Buettner FF, Tiemann B, Gerardy-Schahn R, Bakker H.

Glycobiology. 2013 Mar;23(3):303-9. doi: 10.1093/glycob/cws153. Epub 2012 Nov 7.

PMID:
23135544
4.

Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE.

Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP.

Science. 2012 Jan 6;335(6064):93-6. doi: 10.1126/science.1214115.

5.

Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies.

Grewal PK, McLaughlan JM, Moore CJ, Browning CA, Hewitt JE.

Glycobiology. 2005 Oct;15(10):912-23. Epub 2005 Jun 15.

PMID:
15958417
6.

LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans.

Inamori KI, Beedle AM, de Bernabé DB, Wright ME, Campbell KP.

Glycobiology. 2016 Dec;26(12):1284-1296. Epub 2016 Jul 22.

7.

The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation.

Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Hara Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell KP.

Elife. 2014 Oct 3;3. doi: 10.7554/eLife.03941.

8.

LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE.

Fujimura K, Sawaki H, Sakai T, Hiruma T, Nakanishi N, Sato T, Ohkura T, Narimatsu H.

Biochem Biophys Res Commun. 2005 Apr 15;329(3):1162-71.

PMID:
15752776
9.

Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding.

Patnaik SK, Stanley P.

J Biol Chem. 2005 May 27;280(21):20851-9. Epub 2005 Mar 23.

10.

Large induces functional glycans in an O-mannosylation dependent manner and targets GlcNAc terminals on alpha-dystroglycan.

Hu Y, Li ZF, Wu X, Lu Q.

PLoS One. 2011 Feb 9;6(2):e16866. doi: 10.1371/journal.pone.0016866.

11.

Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase.

Zhang P, Hu H.

Glycobiology. 2012 Feb;22(2):235-47. doi: 10.1093/glycob/cwr131. Epub 2011 Sep 19.

12.

B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan.

Praissman JL, Live DH, Wang S, Ramiah A, Chinoy ZS, Boons GJ, Moremen KW, Wells L.

Elife. 2014 Oct 3;3. doi: 10.7554/eLife.03943.

13.

Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy.

Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F.

Hum Mol Genet. 2005 Mar 1;14(5):657-65. Epub 2005 Jan 20.

PMID:
15661757
14.

LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies.

Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell KP.

Nat Med. 2004 Jul;10(7):696-703. Epub 2004 Jun 6.

15.

The Muscular Dystrophy Gene TMEM5 Encodes a Ribitol β1,4-Xylosyltransferase Required for the Functional Glycosylation of Dystroglycan.

Manya H, Yamaguchi Y, Kanagawa M, Kobayashi K, Tajiri M, Akasaka-Manya K, Kawakami H, Mizuno M, Wada Y, Toda T, Endo T.

J Biol Chem. 2016 Nov 18;291(47):24618-24627. Epub 2016 Oct 12.

PMID:
27733679
16.

LARGE expression augments the glycosylation of glycoproteins in addition to α-dystroglycan conferring laminin binding.

Zhang Z, Zhang P, Hu H.

PLoS One. 2011 Apr 20;6(4):e19080. doi: 10.1371/journal.pone.0019080.

17.

AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan.

Yagi H, Nakagawa N, Saito T, Kiyonari H, Abe T, Toda T, Wu SW, Khoo KH, Oka S, Kato K.

Sci Rep. 2013 Nov 21;3:3288. doi: 10.1038/srep03288.

18.

Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding.

Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB.

J Virol. 2005 Nov;79(22):14282-96.

19.

Biochemical correlation of activity of the α-dystroglycan-modifying glycosyltransferase POMGnT1 with mutations in muscle-eye-brain disease.

Voglmeir J, Kaloo S, Laurent N, Meloni MM, Bohlmann L, Wilson IB, Flitsch SL.

Biochem J. 2011 Jun 1;436(2):447-55. doi: 10.1042/BJ20101059.

20.

Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection.

Hara Y, Kanagawa M, Kunz S, Yoshida-Moriguchi T, Satz JS, Kobayashi YM, Zhu Z, Burden SJ, Oldstone MB, Campbell KP.

Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17426-31. doi: 10.1073/pnas.1114836108. Epub 2011 Oct 10.

Supplemental Content

Support Center