Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Surface ion transfer growth of ternary CdS(1-x)Se(x) quantum dots and their electron transport modulation.

Chen Z, Peng W, Zhang K, Zhang J, Yanagida M, Han L.

Nanoscale. 2012 Dec 21;4(24):7690-7. doi: 10.1039/c2nr31703f. Epub 2012 Nov 2.

PMID:
23123801
2.

One-step preparation and assembly of aqueous colloidal CdS(x)Se(1-x) nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells.

Song X, Wang M, Deng J, Yang Z, Ran C, Zhang X, Yao X.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5139-48. doi: 10.1021/am4009924. Epub 2013 May 23.

PMID:
23659502
3.

[Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].

Han ZZ, Ren LL, Pan HB, Li CY, Chen JH, Chen JZ.

Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Nov;35(11):3161-6. Chinese.

PMID:
26978928
4.

ZnO-CdS core-shell quantum dots sensitized solar cell: influence of crystalline and amorphous CdS structures in photovoltaic performance.

Lim I, Ganesh T, Lee M, Lee DY, Cai G, Kim EK, Lee W, Han SH.

J Nanosci Nanotechnol. 2011 Jul;11(7):6550-4.

PMID:
22121754
5.

Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.

Robel I, Subramanian V, Kuno M, Kamat PV.

J Am Chem Soc. 2006 Feb 22;128(7):2385-93.

PMID:
16478194
6.
7.

Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots.

Gong HM, Wang XH, Du YM, Wang QQ.

J Chem Phys. 2006 Jul 14;125(2):24707.

PMID:
16848604
8.

Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly.

Choi H, Santra PK, Kamat PV.

ACS Nano. 2012 Jun 26;6(6):5718-26. doi: 10.1021/nn301982e. Epub 2012 Jun 6.

PMID:
22658983
9.

Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.

Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY.

ACS Nano. 2011 Dec 27;5(12):9494-500. doi: 10.1021/nn203375g. Epub 2011 Nov 2.

PMID:
22032641
10.

Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).

Yang L, McCue C, Zhang Q, Uchaker E, Mai Y, Cao G.

Nanoscale. 2015 Feb 21;7(7):3173-80. doi: 10.1039/c4nr06935h.

PMID:
25615827
11.

Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.

Chen J, Zheng A, Gao Y, He C, Wu G, Chen Y, Kai X, Zhu C.

Spectrochim Acta A Mol Biomol Spectrosc. 2008 Mar;69(3):1044-52. Epub 2007 Jun 23.

PMID:
17660001
12.

Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

Zhu H, Song N, Lian T.

J Am Chem Soc. 2011 Jun 8;133(22):8762-71. doi: 10.1021/ja202752s. Epub 2011 May 17.

PMID:
21534569
13.

Assembly of CdS quantum dots onto mesoscopic TiO(2) films for quantum dot-sensitized solar cell applications.

Shen YJ, Lee YL.

Nanotechnology. 2008 Jan 30;19(4):045602. doi: 10.1088/0957-4484/19/04/045602. Epub 2008 Jan 4.

PMID:
21817508
14.

Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays.

Liu Z, Ji G, Guan D, Wang B, Wu X.

J Colloid Interface Sci. 2015 Nov 1;457:1-8. doi: 10.1016/j.jcis.2015.06.038. Epub 2015 Jun 24.

PMID:
26142959
15.

CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.

Zhu G, Pan L, Xu T, Sun Z.

ACS Appl Mater Interfaces. 2011 Aug;3(8):3146-51. doi: 10.1021/am200648b. Epub 2011 Jul 19.

PMID:
21744836
16.

Optical characteristics of CdSe quantum dots depending on growth conditions and surface passivation.

Jung SI, Yeo HY, Yun I, Cho SM, Han IK, Lee JI.

J Nanosci Nanotechnol. 2008 Sep;8(9):4899-902.

PMID:
19049134
17.

CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

Mali SS, Desai SK, Dalavi DS, Betty CA, Bhosale PN, Patil PS.

Photochem Photobiol Sci. 2011 Oct;10(10):1652-8. doi: 10.1039/c1pp05084b. Epub 2011 Jul 29.

PMID:
21799995
18.

Controlled growth of ZnO/Zn₁-xPbxSe core-shell nanowires and their interfacial electronic energy alignment.

Chen ZH, Yeung SY, Li H, Qian JC, Zhang WJ, Li YY, Bello I.

Nanoscale. 2012 May 21;4(10):3154-61. doi: 10.1039/c2nr12089e. Epub 2012 Apr 10.

PMID:
22491746
19.

Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1-xS Quantum Dots as Photosensitizers.

Yuan C, Li L, Huang J, Ning Z, Sun L, Ågren H.

Nanomaterials (Basel). 2016 May 25;6(6). pii: E97. doi: 10.3390/nano6060097.

20.

CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays.

Deng J, Wang M, Song X, Shi Y, Zhang X.

J Colloid Interface Sci. 2012 Dec 15;388(1):118-22. doi: 10.1016/j.jcis.2012.08.017. Epub 2012 Aug 16.

PMID:
22964094

Supplemental Content

Support Center