Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures.

Chen Z, Chen B, Zhou D, Chen W.

Environ Sci Technol. 2012 Nov 20;46(22):12476-83. doi: 10.1021/es303351e. Epub 2012 Nov 9.

PMID:
23121559
2.

Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.

Chen B, Chen Z.

Chemosphere. 2009 Jun;76(1):127-33. doi: 10.1016/j.chemosphere.2009.02.004. Epub 2009 Mar 17.

PMID:
19282020
4.

Fast and slow rates of naphthalene sorption to biochars produced at different temperatures.

Chen Z, Chen B, Chiou CT.

Environ Sci Technol. 2012 Oct 16;46(20):11104-11. doi: 10.1021/es302345e. Epub 2012 Sep 26.

PMID:
22970831
5.

Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.

Ding W, Dong X, Ime IM, Gao B, Ma LQ.

Chemosphere. 2014 Jun;105:68-74. doi: 10.1016/j.chemosphere.2013.12.042. Epub 2014 Jan 3.

PMID:
24393563
6.

Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.

Han Y, Boateng AA, Qi PX, Lima IM, Chang J.

J Environ Manage. 2013 Mar 30;118:196-204. doi: 10.1016/j.jenvman.2013.01.001. Epub 2013 Feb 24.

PMID:
23454371
7.

Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.

Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW.

Chemosphere. 2015 Sep;134:257-62. doi: 10.1016/j.chemosphere.2015.04.062. Epub 2015 May 15.

PMID:
25957037
8.

Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene.

Zhang H, Lin K, Wang H, Gan J.

Environ Pollut. 2010 Sep;158(9):2821-5. doi: 10.1016/j.envpol.2010.06.025. Epub 2010 Jul 16.

PMID:
20638165
9.

Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems.

Lian F, Huang F, Chen W, Xing B, Zhu L.

Environ Pollut. 2011 Apr;159(4):850-7. doi: 10.1016/j.envpol.2011.01.002. Epub 2011 Jan 28.

PMID:
21277057
10.

Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures.

Han L, Qian L, Yan J, Chen M.

Chemosphere. 2016 Aug;156:262-71. doi: 10.1016/j.chemosphere.2016.04.031. Epub 2016 May 12.

PMID:
27179244
11.

Physicochemical and sorption properties of thermally-treated sediments with high organic matter content.

Pan B, Huang P, Wu M, Wang Z, Wang P, Jiao X, Xing B.

Bioresour Technol. 2012 Jan;103(1):367-73. doi: 10.1016/j.biortech.2011.09.054. Epub 2011 Sep 21.

PMID:
22033373
12.

A novel magnetic biochar efficiently sorbs organic pollutants and phosphate.

Chen B, Chen Z, Lv S.

Bioresour Technol. 2011 Jan;102(2):716-23. doi: 10.1016/j.biortech.2010.08.067. Epub 2010 Sep 21.

PMID:
20863698
13.

Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures.

Wang Z, Han L, Sun K, Jin J, Ro KS, Libra JA, Liu X, Xing B.

Chemosphere. 2016 Feb;144:285-91. doi: 10.1016/j.chemosphere.2015.08.042. Epub 2015 Sep 10.

PMID:
26364218
14.

Interaction mechanisms of organic contaminants with burned straw ash charcoal.

Huang W, Chen B.

J Environ Sci (China). 2010;22(10):1586-94.

PMID:
21235190
15.

Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.

Guo X, Wang X, Zhou X, Ding X, Fu B, Tao S, Xing B.

Environ Sci Technol. 2013;47(21):12148-55. doi: 10.1021/es401732e. Epub 2013 Oct 7.

PMID:
24041398
16.

Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.

Zhang M, Shu L, Shen X, Guo X, Tao S, Xing B, Wang X.

Environ Pollut. 2014 Dec;195:84-90. doi: 10.1016/j.envpol.2014.08.018. Epub 2014 Sep 6.

PMID:
25194275
17.

Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility.

Chen B, Johnson EJ, Chefetz B, Zhu L, Xing B.

Environ Sci Technol. 2005 Aug 15;39(16):6138-46.

PMID:
16173574
18.

Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures.

Zheng H, Wang Z, Zhao J, Herbert S, Xing B.

Environ Pollut. 2013 Oct;181:60-7. doi: 10.1016/j.envpol.2013.05.056. Epub 2013 Jun 29.

PMID:
23811180
19.

Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).

Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B.

Environ Sci Technol. 2010 Aug 15;44(16):6189-95. doi: 10.1021/es1014423.

PMID:
20669904
20.

Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).

Kim KH, Kim JY, Cho TS, Choi JW.

Bioresour Technol. 2012 Aug;118:158-62. doi: 10.1016/j.biortech.2012.04.094. Epub 2012 May 3.

PMID:
22705519

Supplemental Content

Support Center