Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10).

Amaral IF, Neiva I, Ferreira da Silva F, Sousa SR, Piloto AM, Lopes CD, Barbosa MA, Kirkpatrick CJ, Pêgo AP.

Acta Biomater. 2013 Mar;9(3):5643-52. doi: 10.1016/j.actbio.2012.10.029. Epub 2012 Oct 29.

PMID:
23117145
2.

Fibronectin-mediated endothelialisation of chitosan porous matrices.

Amaral IF, Unger RE, Fuchs S, Mendonça AM, Sousa SR, Barbosa MA, Pêgo AP, Kirkpatrick CJ.

Biomaterials. 2009 Oct;30(29):5465-75. doi: 10.1016/j.biomaterials.2009.06.056. Epub 2009 Jul 16.

PMID:
19615736
3.

Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by ¹²⁵I-radiolabelling.

Amaral IF, Sousa SR, Neiva I, Marcos-Silva L, Kirkpatrick CJ, Barbosa MA, Pêgo AP.

Biomatter. 2013 Apr-Jun;3(2). pii: e24791. doi: 10.4161/biom.24791. Epub 2013 Apr 29.

4.

Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.

J Biomed Mater Res A. 2010 Jun 1;93(3):1193-208. doi: 10.1002/jbm.a.32615.

PMID:
19777575
5.

Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering.

Chiu LL, Weisel RD, Li RK, Radisic M.

J Tissue Eng Regen Med. 2011 Jan;5(1):69-84. doi: 10.1002/term.292. Epub 2010 Aug 17.

PMID:
20717888
6.

Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.

Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL.

Tissue Eng Part A. 2008 Aug;14(8):1305-19. doi: 10.1089/ten.tea.2007.0229.

PMID:
18491953
7.

Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

Hussain A, Collins G, Yip D, Cho CH.

Biotechnol Bioeng. 2013 Feb;110(2):637-47. doi: 10.1002/bit.24727. Epub 2012 Oct 5.

PMID:
22991229
8.

Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds.

Barbosa JN, Amaral IF, Aguas AP, Barbosa MA.

J Biomed Mater Res A. 2010 Apr;93(1):20-8. doi: 10.1002/jbm.a.32499.

PMID:
19484769
9.

Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues.

Chiu LL, Radisic M.

Biomaterials. 2010 Jan;31(2):226-41. doi: 10.1016/j.biomaterials.2009.09.039. Epub 2009 Oct 2.

PMID:
19800684
10.

Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation.

Campillo-Fernández AJ, Unger RE, Peters K, Halstenberg S, Santos M, Salmerón Sánchez M, Meseguer Dueñas JM, Monleón Pradas M, Gómez Ribelles JL, Kirkpatrick CJ.

Tissue Eng Part A. 2009 Jun;15(6):1331-41. doi: 10.1089/ten.tea.2008.0146.

PMID:
18976156
11.

Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications.

Isikli C, Hasirci V, Hasirci N.

J Tissue Eng Regen Med. 2012 Feb;6(2):135-43. doi: 10.1002/term.406. Epub 2011 Feb 24.

PMID:
21351375
12.

Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method.

Ruan Y, Lin H, Yao J, Chen Z, Shao Z.

Macromol Biosci. 2011 Mar 10;11(3):419-26. doi: 10.1002/mabi.201000392. Epub 2011 Jan 7.

PMID:
21218404
13.

Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation.

Custódio CA, Alves CM, Reis RL, Mano JF.

J Tissue Eng Regen Med. 2010 Jun;4(4):316-23. doi: 10.1002/term.248.

PMID:
20049746
14.

Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering.

Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF.

Tissue Eng Part C Methods. 2011 Jul;17(7):717-30. doi: 10.1089/ten.tec.2010.0467. Epub 2011 Apr 25.

PMID:
21517692
15.

Evaluation of a multilayered chitosan-hydroxy-apatite porous composite enriched with fibronectin or an in vitro-generated bone-like extracellular matrix on proliferation and diferentiation of osteoblasts.

Fernández MS, Arias JI, Martínez MJ, Saenz L, Neira-Carrillo A, Yazdani-Pedram M, Arias JL.

J Tissue Eng Regen Med. 2012 Jun;6(6):497-504. doi: 10.1002/term.455. Epub 2011 Aug 2.

PMID:
21812117
16.

Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds.

Odedra D, Chiu LL, Shoichet M, Radisic M.

Acta Biomater. 2011 Aug;7(8):3027-35. doi: 10.1016/j.actbio.2011.05.002. Epub 2011 May 10.

PMID:
21601017
17.

Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering.

Depan D, Surya PK, Girase B, Misra RD.

Acta Biomater. 2011 May;7(5):2163-75. doi: 10.1016/j.actbio.2011.01.029. Epub 2011 Feb 1. Erratum in: Acta Biomater. 2012 Mar;8(3):1394.

PMID:
21284959
18.

Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation.

Amaral IF, Lamghari M, Sousa SR, Sampaio P, Barbosa MA.

J Biomed Mater Res A. 2005 Nov 1;75(2):387-97.

PMID:
16092111
19.

Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization.

Han J, Zhou Z, Yin R, Yang D, Nie J.

Int J Biol Macromol. 2010 Mar 1;46(2):199-205. doi: 10.1016/j.ijbiomac.2009.11.004. Epub 2009 Nov 24.

PMID:
19941890
20.

Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells.

Thein-Han WW, Saikhun J, Pholpramoo C, Misra RD, Kitiyanant Y.

Acta Biomater. 2009 Nov;5(9):3453-66. doi: 10.1016/j.actbio.2009.05.012. Epub 2009 May 19.

PMID:
19460465

Supplemental Content

Support Center