Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus.

Kondratowicz AS, Hunt CL, Davey RA, Cherry S, Maury WJ.

J Virol. 2013 Jan;87(2):746-55. doi: 10.1128/JVI.01634-12. Epub 2012 Oct 31.

2.

Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection.

Zhang X, Ao Z, Bello A, Ran X, Liu S, Wigle J, Kobinger G, Yao X.

Antiviral Res. 2016 Mar;127:20-31. doi: 10.1016/j.antiviral.2016.01.001. Epub 2016 Jan 9.

PMID:
26778707
3.

Cell-cell contact promotes Ebola virus GP-mediated infection.

Miao C, Li M, Zheng YM, Cohen FS, Liu SL.

Virology. 2016 Jan 15;488:202-15. doi: 10.1016/j.virol.2015.11.019. Epub 2015 Dec 3.

4.

Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells.

Johnson JC, Martinez O, Honko AN, Hensley LE, Olinger GG, Basler CF.

Antiviral Res. 2014 Jul;107:102-9. doi: 10.1016/j.antiviral.2014.04.014. Epub 2014 May 9.

5.

Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y.

PLoS Pathog. 2010 Sep 23;6(9):e1001121. doi: 10.1371/journal.ppat.1001121.

6.

Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages.

Olejnik J, Forero A, Deflubé LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Mühlberger E.

J Virol. 2017 May 12;91(11). pii: e00179-17. doi: 10.1128/JVI.00179-17. Print 2017 Jun 1.

7.

Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus.

Kuroda M, Fujikura D, Nanbo A, Marzi A, Noyori O, Kajihara M, Maruyama J, Matsuno K, Miyamoto H, Yoshida R, Feldmann H, Takada A.

J Virol. 2015 Jun;89(12):6481-93. doi: 10.1128/JVI.03156-14. Epub 2015 Apr 8.

8.

Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.

Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W.

MBio. 2014 Jan 28;5(1):e00862-13. doi: 10.1128/mBio.00862-13.

9.

Identification of a small-molecule entry inhibitor for filoviruses.

Basu A, Li B, Mills DM, Panchal RG, Cardinale SC, Butler MM, Peet NP, Majgier-Baranowska H, Williams JD, Patel I, Moir DT, Bavari S, Ray R, Farzan MR, Rong L, Bowlin TL.

J Virol. 2011 Apr;85(7):3106-19. doi: 10.1128/JVI.01456-10. Epub 2011 Jan 26.

10.

Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

Shoemaker CJ, Schornberg KL, Delos SE, Scully C, Pajouhesh H, Olinger GG, Johansen LM, White JM.

PLoS One. 2013;8(2):e56265. doi: 10.1371/journal.pone.0056265. Epub 2013 Feb 18. Erratum in: PLoS One. 2013;8(10). doi:10.1371/annotation/76780c06-ac81-48a3-8cce-509da6858fe5.

11.

Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

Cheng H, Lear-Rooney CM, Johansen L, Varhegyi E, Chen ZW, Olinger GG, Rong L.

J Virol. 2015 Oct;89(19):9932-8. doi: 10.1128/JVI.01337-15. Epub 2015 Jul 22.

12.

The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection.

Nelson EA, Dyall J, Hoenen T, Barnes AB, Zhou H, Liang JY, Michelotti J, Dewey WH, DeWald LE, Bennett RS, Morris PJ, Guha R, Klumpp-Thomas C, McKnight C, Chen YC, Xu X, Wang A, Hughes E, Martin S, Thomas C, Jahrling PB, Hensley LE, Olinger GG Jr, White JM.

PLoS Negl Trop Dis. 2017 Apr 12;11(4):e0005540. doi: 10.1371/journal.pntd.0005540. eCollection 2017 Apr.

13.

Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry.

O'Hearn A, Wang M, Cheng H, Lear-Rooney CM, Koning K, Rumschlag-Booms E, Varhegyi E, Olinger G, Rong L.

J Virol. 2015 May;89(10):5441-9. doi: 10.1128/JVI.03689-14. Epub 2015 Mar 4.

14.

Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry.

Rhein BA, Brouillette RB, Schaack GA, Chiorini JA, Maury W.

J Virol. 2016 Jun 10;90(13):6097-6111. doi: 10.1128/JVI.00100-16. Print 2016 Jul 1.

15.

Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression.

Gnirss K, Kühl A, Karsten C, Glowacka I, Bertram S, Kaup F, Hofmann H, Pöhlmann S.

Virology. 2012 Mar 1;424(1):3-10. doi: 10.1016/j.virol.2011.11.031. Epub 2012 Jan 4.

16.

Cathepsin B & L are not required for ebola virus replication.

Marzi A, Reinheckel T, Feldmann H.

PLoS Negl Trop Dis. 2012;6(12):e1923. doi: 10.1371/journal.pntd.0001923. Epub 2012 Dec 6.

17.

Growth-Adaptive Mutations in the Ebola Virus Makona Glycoprotein Alter Different Steps in the Virus Entry Pathway.

Ruedas JB, Arnold CE, Palacios G, Connor JH.

J Virol. 2018 Sep 12;92(19). pii: e00820-18. doi: 10.1128/JVI.00820-18. Print 2018 Oct 1.

PMID:
30021890
18.

Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization.

Marzi A, Wegele A, Pöhlmann S.

Virology. 2006 Sep 1;352(2):345-56. Epub 2006 Jun 13.

19.

Novel Small Molecule Entry Inhibitors of Ebola Virus.

Basu A, Mills DM, Mitchell D, Ndungo E, Williams JD, Herbert AS, Dye JM, Moir DT, Chandran K, Patterson JL, Rong L, Bowlin TL.

J Infect Dis. 2015 Oct 1;212 Suppl 2:S425-34. doi: 10.1093/infdis/jiv223. Epub 2015 Jul 22.

20.

Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors.

Quinn K, Brindley MA, Weller ML, Kaludov N, Kondratowicz A, Hunt CL, Sinn PL, McCray PB Jr, Stein CS, Davidson BL, Flick R, Mandell R, Staplin W, Maury W, Chiorini JA.

J Virol. 2009 Oct;83(19):10176-86. doi: 10.1128/JVI.00422-09. Epub 2009 Jul 22.

Supplemental Content

Support Center