Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats.

Shen RL, Dang XY, Dong JL, Hu XZ.

J Agric Food Chem. 2012 Nov 14;60(45):11301-8. doi: 10.1021/jf302824h. Epub 2012 Nov 6.

PMID:
23113683
2.

Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets.

Pieper R, Jha R, Rossnagel B, Van Kessel AG, Souffrant WB, Leterme P.

FEMS Microbiol Ecol. 2008 Dec;66(3):556-66. doi: 10.1111/j.1574-6941.2008.00605.x. Epub 2008 Jun 16.

3.

Oat β-glucan increased ATPases activity and energy charge in small intestine of rats.

Zhang PP, Hu XZ, Zhen HM, Xu C, Fan MT.

J Agric Food Chem. 2012 Oct 3;60(39):9822-7. doi: 10.1021/jf3017496. Epub 2012 Sep 25.

PMID:
22970825
4.

Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults.

Ibrügger S, Kristensen M, Poulsen MW, Mikkelsen MS, Ejsing J, Jespersen BM, Dragsted LO, Engelsen SB, Bügel S.

J Nutr. 2013 Oct;143(10):1579-85. doi: 10.3945/jn.112.173054. Epub 2013 Aug 14.

PMID:
23946347
5.

Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of Salmonella enterica in an in vitro model of the porcine gastrointestinal tract.

Pieper R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P.

Appl Environ Microbiol. 2009 Nov;75(22):7006-16. doi: 10.1128/AEM.01343-09. Epub 2009 Sep 25.

6.

Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.

Zhong Y, Marungruang N, Fåk F, Nyman M.

Br J Nutr. 2015 May 28;113(10):1558-70. doi: 10.1017/S0007114515000793. Epub 2015 Apr 13.

PMID:
25864430
7.
8.

Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs.

Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, Gänzle MG.

FEMS Microbiol Ecol. 2011 Mar;75(3):402-13. doi: 10.1111/j.1574-6941.2010.01017.x. Epub 2010 Dec 17.

9.

In vitro fermentation of oat β-glucan and hydrolysates by fecal microbiota and selected probiotic strains.

Dong JL, Yu X, Dong LE, Shen RL.

J Sci Food Agric. 2017 Sep;97(12):4198-4203. doi: 10.1002/jsfa.8292. Epub 2017 Apr 3.

PMID:
28244112
10.

Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets.

Jha R, Rossnagel B, Pieper R, Van Kessel A, Leterme P.

Animal. 2010 May;4(5):724-31. doi: 10.1017/S1751731109991510.

PMID:
22444125
11.

Enzyme deactivation treatments did not decrease the beneficial role of oat food in intestinal microbiota and short-chain fatty acids: an in vivo study.

Hu X, Xing X, Zhen H.

J Sci Food Agric. 2013 Feb;93(3):504-8. doi: 10.1002/jsfa.5808. Epub 2012 Jul 27.

PMID:
22836833
12.

Molecular structure of large-scale extracted β-glucan from barley and oat: Identification of a significantly changed block structure in a high β-glucan barley mutant.

Mikkelsen MS, Jespersen BM, Larsen FH, Blennow A, Engelsen SB.

Food Chem. 2013 Jan 1;136(1):130-8. doi: 10.1016/j.foodchem.2012.07.097. Epub 2012 Aug 1.

PMID:
23017403
13.

Effects of barley and oat β-glucan structures on their rheological and thermal characteristics.

Ryu JH, Lee S, You S, Shim JH, Yoo SH.

Carbohydr Polym. 2012 Aug 1;89(4):1238-43. doi: 10.1016/j.carbpol.2012.04.025. Epub 2012 Apr 17.

PMID:
24750937
14.

Dietary (1-->3), (1-->4)-beta-D-glucans from oat activate nuclear factor-kappaB in intestinal leukocytes and enterocytes from mice.

Volman JJ, Mensink RP, Ramakers JD, de Winther MP, Carlsen H, Blomhoff R, Buurman WA, Plat J.

Nutr Res. 2010 Jan;30(1):40-8. doi: 10.1016/j.nutres.2009.10.023.

PMID:
20116659
15.

Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.

Nordlund E, Aura AM, Mattila I, Kössö T, Rouau X, Poutanen K.

J Agric Food Chem. 2012 Aug 22;60(33):8134-45. doi: 10.1021/jf3008037. Epub 2012 Aug 14.

PMID:
22731123
16.

Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet.

Belobrajdic DP, Jobling SA, Morell MK, Taketa S, Bird AR.

Nutr Res. 2015 Feb;35(2):162-8. doi: 10.1016/j.nutres.2014.12.006. Epub 2014 Dec 31.

PMID:
25622537
17.

Impact of beta-glucan on the faecal microbiota of polypectomized patients: a pilot study.

Turunen K, Tsouvelakidou E, Nomikos T, Mountzouris KC, Karamanolis D, Triantafillidis J, Kyriacou A.

Anaerobe. 2011 Dec;17(6):403-6. doi: 10.1016/j.anaerobe.2011.03.025. Epub 2011 Apr 16.

PMID:
21515398
18.

In vitro fermentation of oat flours from typical and high beta-glucan oat lines.

Kim HJ, White PJ.

J Agric Food Chem. 2009 Aug 26;57(16):7529-36. doi: 10.1021/jf900788c.

PMID:
19572543
19.

Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels.

Tiwari U, Cummins E.

Nutrition. 2011 Oct;27(10):1008-16. doi: 10.1016/j.nut.2010.11.006. Epub 2011 Apr 6.

PMID:
21470820
20.

In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan.

Kim HJ, White PJ.

J Agric Food Chem. 2010 Jan 13;58(1):628-34. doi: 10.1021/jf902508t.

PMID:
20020684

Supplemental Content

Support Center