Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

Kawamoto T, Kanzaki M, Mibe K, Matsukage KN, Ono S.

Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18695-700. doi: 10.1073/pnas.1207687109. Epub 2012 Oct 29.

2.

Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.

Kessel R, Schmidt MW, Ulmer P, Pettke T.

Nature. 2005 Sep 29;437(7059):724-7.

PMID:
16193050
3.

Slab melting versus slab dehydration in subduction-zone magmatism.

Mibe K, Kawamoto T, Matsukage KN, Fei Y, Ono S.

Proc Natl Acad Sci U S A. 2011 May 17;108(20):8177-82. doi: 10.1073/pnas.1010968108. Epub 2011 May 2.

4.

Subduction of fracture zones controls mantle melting and geochemical signature above slabs.

Manea VC, Leeman WP, Gerya T, Manea M, Zhu G.

Nat Commun. 2014 Oct 24;5:5095. doi: 10.1038/ncomms6095.

PMID:
25342158
5.

Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.

Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wöerner G, Volynets ON.

Nature. 2001 Jan 25;409(6819):500-4.

PMID:
11206543
6.

Kinematic variables and water transport control the formation and location of arc volcanoes.

Grove TL, Till CB, Lev E, Chatterjee N, Médard E.

Nature. 2009 Jun 4;459(7247):694-7. doi: 10.1038/nature08044.

PMID:
19494913
7.

Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno MH, Okuno M, Kobayashi T.

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9663-8. doi: 10.1073/pnas.1302040110. Epub 2013 May 28.

8.

Geochemical evidence for mélange melting in global arcs.

Nielsen SG, Marschall HR.

Sci Adv. 2017 Apr 7;3(4):e1602402. doi: 10.1126/sciadv.1602402. eCollection 2017 Apr.

9.

Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust.

Prouteau G, Scaillet B, Pichavant M, Maury R.

Nature. 2001 Mar 8;410(6825):197-200.

PMID:
11242077
10.

Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

McGary RS, Evans RL, Wannamaker PE, Elsenbeck J, Rondenay S.

Nature. 2014 Jul 17;511(7509):338-40. doi: 10.1038/nature13493.

PMID:
25030172
11.

Oceanic slab melting and mantle metasomatism.

Scaillet B, Prouteau G.

Sci Prog. 2001;84(Pt 4):335-54.

PMID:
11838241
12.

Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ.

Nature. 2015 Aug 20;524(7565):339-42. doi: 10.1038/nature14857.

PMID:
26289205
13.

Magnesium isotope geochemistry in arc volcanism.

Teng FZ, Hu Y, Chauvel C.

Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7082-7. doi: 10.1073/pnas.1518456113. Epub 2016 Jun 14.

14.

Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

Manthilake G, Bolfan-Casanova N, Novella D, Mookherjee M, Andrault D.

Sci Adv. 2016 May 6;2(5):e1501631. doi: 10.1126/sciadv.1501631. eCollection 2016 May.

15.

Fluid processes in subduction zones.

Peacock SA.

Science. 1990 Apr 20;248(4953):329-37.

PMID:
17784486
16.

Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

Zhao ZF, Dai LQ, Zheng YF.

Sci Rep. 2013 Dec 4;3:3413. doi: 10.1038/srep03413.

17.

Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles.

Paulatto M, Laigle M, Galve A, Charvis P, Sapin M, Bayrakci G, Evain M, Kopp H.

Nat Commun. 2017 Jul 10;8:15980. doi: 10.1038/ncomms15980.

18.

Continental flood basalts derived from the hydrous mantle transition zone.

Wang XC, Wilde SA, Li QL, Yang YN.

Nat Commun. 2015 Jul 14;6:7700. doi: 10.1038/ncomms8700.

PMID:
26169260
19.
20.

Mantle wedge control on back-arc crustal accretion.

Martinez F, Taylor B.

Nature. 2002 Mar 28;416(6879):417-20.

PMID:
11919628

Supplemental Content

Support Center