Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response.

Ríos G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM.

FEMS Yeast Res. 2013 Feb;13(1):97-106. doi: 10.1111/1567-1364.12013. Epub 2012 Nov 19.

2.

Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells.

Vargas RC, García-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR, Ramos J, Sá-Correia I.

Eukaryot Cell. 2007 Feb;6(2):134-42. Epub 2006 Dec 22.

3.

Saccharomyces cerevisiae multidrug transporter Qdr2p (Yil121wp): localization and function as a quinidine resistance determinant.

Vargas RC, Tenreiro S, Teixeira MC, Fernandes AR, Sá-Correia I.

Antimicrob Agents Chemother. 2004 Jul;48(7):2531-7.

4.

Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4.

Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I.

Microbiology. 2011 Apr;157(Pt 4):945-56. doi: 10.1099/mic.0.043661-0. Epub 2010 Dec 9.

PMID:
21148207
5.

Physiological basis of copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants.

Wang X, Okonkwo O, Kebaara BW.

Yeast. 2013 May;30(5):179-90. doi: 10.1002/yea.2950. Epub 2013 Apr 12.

7.

Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

Felcmanova K, Neveceralova P, Sychrova H, Zimmermannova O.

FEMS Yeast Res. 2017 Aug 1;17(5). doi: 10.1093/femsyr/fox053.

PMID:
28810704
8.

The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin.

Tenreiro S, Vargas RC, Teixeira MC, Magnani C, Sá-Correia I.

Biochem Biophys Res Commun. 2005 Feb 18;327(3):952-9.

PMID:
15649438
9.
10.

Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae.

Conklin DS, Culbertson MR, Kung C.

Mol Gen Genet. 1994 Aug 2;244(3):303-11.

PMID:
8058041
11.

Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment.

Serrano R, Bernal D, Simón E, Ariño J.

J Biol Chem. 2004 May 7;279(19):19698-704. Epub 2004 Mar 1.

12.

Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.

Takahashi S, Ando A, Takagi H, Shima J.

Appl Environ Microbiol. 2009 Nov;75(21):6706-11. doi: 10.1128/AEM.00905-09. Epub 2009 Sep 11.

13.

Ref2, a regulatory subunit of the yeast protein phosphatase 1, is a novel component of cation homoeostasis.

Ferrer-Dalmau J, González A, Platara M, Navarrete C, Martínez JL, Barreto L, Ramos J, Ariño J, Casamayor A.

Biochem J. 2010 Feb 24;426(3):355-64. doi: 10.1042/BJ20091909.

PMID:
20028335
15.

Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance.

de Nadal E, Calero F, Ramos J, Ariño J.

J Bacteriol. 1999 Oct;181(20):6456-62.

16.
17.

CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae.

Culotta VC, Howard WR, Liu XF.

J Biol Chem. 1994 Oct 14;269(41):25295-302.

18.
19.

A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.

Li L, Kaplan J.

J Biol Chem. 2004 Aug 6;279(32):33653-61. Epub 2004 May 25.

20.

Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance.

Petrezselyova S, Zahradka J, Sychrova H.

Fungal Biol. 2010 Feb-Mar;114(2-3):144-50.

PMID:
20960970

Supplemental Content

Support Center