Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer.

Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, Sadgrove M, Tran TH, Jay M, Lu X.

J Nucl Med. 2013 Jan;54(1):111-6. doi: 10.2967/jnumed.112.106609. Epub 2012 Oct 25.

2.

Preparation of neutron-activatable holmium nanoparticles for the treatment of ovarian cancer metastases.

Di Pasqua AJ, Huckle JE, Kim JK, Chung Y, Wang AZ, Jay M, Lu X.

Small. 2012 Apr 10;8(7):997-1000. doi: 10.1002/smll.201102488. Epub 2012 Feb 2.

PMID:
22298503
3.

Influence of neutron irradiation on holmium acetylacetonate loaded poly(L-lactic acid) microspheres.

Nijsen JF, van Het Schip AD, van Steenbergen MJ, Zielhuis SW, Kroon-Batenburg LM, van de Weert M, van Rijk PP, Hennink WE.

Biomaterials. 2002 Apr;23(8):1831-9.

PMID:
11950053
4.

Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape.

Tu J, Wang T, Shi W, Wu G, Tian X, Wang Y, Ge D, Ren L.

Biomaterials. 2012 Nov;33(31):7903-14. doi: 10.1016/j.biomaterials.2012.07.025. Epub 2012 Jul 26.

PMID:
22840227
5.

Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation.

Hamoudeh M, Fessi H, Salim H, Barbos D.

Drug Dev Ind Pharm. 2008 Aug;34(8):796-806. doi: 10.1080/03639040801918623 .

PMID:
18651284
6.

Microbrachytherapy using holmium-166 acetylacetonate microspheres: a pilot study in a spontaneous cancer animal model.

Bult W, Vente MA, Vandermeulen E, Gielen I, Seevinck PR, Saunders J, van Het Schip AD, Bakker CJ, Krijger GC, Peremans K, Nijsen JF.

Brachytherapy. 2013 Mar-Apr;12(2):171-7. doi: 10.1016/j.brachy.2012.08.001. Epub 2012 Sep 19.

PMID:
22999975
7.

Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles.

Tsai CH, Vivero-Escoto JL, Slowing II, Fang IJ, Trewyn BG, Lin VS.

Biomaterials. 2011 Sep;32(26):6234-44. doi: 10.1016/j.biomaterials.2011.04.077. Epub 2011 Jun 17.

PMID:
21684000
8.

Radioactive holmium acetylacetonate microspheres for interstitial microbrachytherapy: an in vitro and in vivo stability study.

Bult W, de Leeuw H, Steinebach OM, van der Bom MJ, Wolterbeek HT, Heeren RM, Bakker CJ, van Het Schip AD, Hennink WE, Nijsen JF.

Pharm Res. 2012 Mar;29(3):827-36. doi: 10.1007/s11095-011-0610-7. Epub 2011 Nov 9.

9.

Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer.

Munaweera I, Levesque-Bishop D, Shi Y, Di Pasqua AJ, Balkus KJ Jr.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22250-6. doi: 10.1021/am506045k. Epub 2014 Dec 2.

PMID:
25396281
10.

Preparation of 166Ho-oxine-lipiodol and its preliminary bioevaluation for the potential application in therapy of liver cancer.

Das T, Chakraborty S, Sarma HD, Venkatesh M, Banerjee S.

Nucl Med Commun. 2009 May;30(5):362-7. doi: 10.1097/MNM.0b013e328329981a.

PMID:
19282794
11.

Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery.

Gan Q, Dai D, Yuan Y, Qian J, Sha S, Shi J, Liu C.

Biomed Microdevices. 2012 Apr;14(2):259-70. doi: 10.1007/s10544-011-9604-9.

PMID:
22124885
12.

In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation.

He Q, Zhang Z, Gao F, Li Y, Shi J.

Small. 2011 Jan 17;7(2):271-80. doi: 10.1002/smll.201001459. Epub 2010 Dec 10.

PMID:
21213393
13.

Small mesoporous silica nanoparticles as carriers for enhanced photodynamic therapy.

Zhu J, Wang H, Liao L, Zhao L, Zhou L, Yu M, Wang Y, Liu B, Yu C.

Chem Asian J. 2011 Sep 5;6(9):2332-8. doi: 10.1002/asia.201100064. Epub 2011 Jul 8.

PMID:
21744503
14.

Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy.

Zhang X, Zhang X, Wang S, Liu M, Zhang Y, Tao L, Wei Y.

ACS Appl Mater Interfaces. 2013 Mar;5(6):1943-7. doi: 10.1021/am302512u. Epub 2013 Mar 5.

PMID:
23363527
15.

Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET.

Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Lindén M.

Nanoscale. 2014 May 7;6(9):4928-35. doi: 10.1039/c3nr06800e.

PMID:
24675844
16.

Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.

Lee JE, Lee N, Kim T, Kim J, Hyeon T.

Acc Chem Res. 2011 Oct 18;44(10):893-902. doi: 10.1021/ar2000259. Epub 2011 Aug 17. Review.

PMID:
21848274
17.

The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo.

Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F.

ACS Nano. 2011 Jul 26;5(7):5390-9. doi: 10.1021/nn200365a. Epub 2011 Jun 8.

PMID:
21634407
18.

A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica.

Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C.

Biomaterials. 2011 Mar;32(7):1932-42. doi: 10.1016/j.biomaterials.2010.11.020. Epub 2010 Dec 4.

PMID:
21131045
19.

Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

Liu Q, Zhang J, Xia W, Gu H.

Nanoscale. 2012 Jun 7;4(11):3415-21. doi: 10.1039/c2nr30352c. Epub 2012 Apr 30.

PMID:
22543531
20.

In-Situ Formation of Holmium Oxide in Pores of Mesoporous Carbon Nanoparticles as Substrates for Neutron-Activatable Radiotherapeutics.

Kim J, Luo ZX, Wu Y, Lu X, Jay M.

Carbon N Y. 2017 Jun;117:92-99. doi: 10.1016/j.carbon.2017.02.085. Epub 2017 Feb 27.

PMID:
28966368

Supplemental Content

Support Center