Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

ZIC-cHILIC as a fractionation method for sensitive and powerful shotgun proteomics.

Di Palma S, Mohammed S, Heck AJ.

Nat Protoc. 2012 Nov;7(11):2041-55. doi: 10.1038/nprot.2012.124. Epub 2012 Oct 25.

PMID:
23099486
2.

Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis.

Di Palma S, Boersema PJ, Heck AJ, Mohammed S.

Anal Chem. 2011 May 1;83(9):3440-7. doi: 10.1021/ac103312e. Epub 2011 Mar 28.

PMID:
21443167
3.

Highly sensitive proteome analysis of FACS-sorted adult colon stem cells.

Di Palma S, Stange D, van de Wetering M, Clevers H, Heck AJ, Mohammed S.

J Proteome Res. 2011 Aug 5;10(8):3814-9. doi: 10.1021/pr200367p. Epub 2011 Jul 8.

PMID:
21696214
4.

Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics.

Zhao Y, Kong RP, Li G, Lam MP, Law CH, Lee SM, Lam HC, Chu IK.

J Sep Sci. 2012 Jul;35(14):1755-63. doi: 10.1002/jssc.201200054.

PMID:
22807358
5.

Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy.

Boersema PJ, Divecha N, Heck AJ, Mohammed S.

J Proteome Res. 2007 Mar;6(3):937-46. Epub 2007 Jan 27.

PMID:
17256977
6.

An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.

Wang H, Sun S, Zhang Y, Chen S, Liu P, Liu B.

J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Jan 1;974:90-5. doi: 10.1016/j.jchromb.2014.10.031. Epub 2014 Nov 4.

PMID:
25463202
7.

Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples.

Horvatovich P, Hoekman B, Govorukhina N, Bischoff R.

J Sep Sci. 2010 Jun;33(10):1421-37. doi: 10.1002/jssc.201000050. Review.

PMID:
20486207
8.

Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

Periat A, Kohler I, Thomas A, Nicoli R, Boccard J, Veuthey JL, Schappler J, Guillarme D.

J Chromatogr A. 2016 Mar 25;1439:42-53. doi: 10.1016/j.chroma.2015.09.035. Epub 2015 Sep 14.

PMID:
26387791
9.

Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.

Zhao Y, Law HC, Zhang Z, Lam HC, Quan Q, Li G, Chu IK.

J Chromatogr A. 2015 Oct 9;1415:57-66. doi: 10.1016/j.chroma.2015.08.017. Epub 2015 Aug 19.

PMID:
26362810
10.

Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography.

Jafari M, Mirzaie M, Khodabandeh M, Rezadoost H, Ghassempour A, Aboul-Enein HY.

Biomed Chromatogr. 2016 Jul;30(7):1036-41. doi: 10.1002/bmc.3647. Epub 2015 Dec 6.

PMID:
26555197
11.

Evaluation of the deuterium isotope effect in zwitterionic hydrophilic interaction liquid chromatography separations for implementation in a quantitative proteomic approach.

Di Palma S, Raijmakers R, Heck AJ, Mohammed S.

Anal Chem. 2011 Nov 1;83(21):8352-6. doi: 10.1021/ac2018074. Epub 2011 Sep 30.

PMID:
21899334
12.

In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.

Han D, Moon S, Kim Y, Kim J, Jin J, Kim Y.

Proteomics. 2013 Oct;13(20):2984-8. doi: 10.1002/pmic.201300091. Epub 2013 Sep 13.

PMID:
23943505
13.

Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.

Batth TS, Francavilla C, Olsen JV.

J Proteome Res. 2014 Dec 5;13(12):6176-86. doi: 10.1021/pr500893m. Epub 2014 Nov 4.

PMID:
25338131
14.

Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection.

Kanamori T, Isokawa M, Funatsu T, Tsunoda M.

J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Mar 15;985:142-8. doi: 10.1016/j.jchromb.2015.01.038. Epub 2015 Feb 3.

PMID:
25682335
15.

Shotgun proteome analysis utilising mixed mode (reversed phase-anion exchange chromatography) in conjunction with reversed phase liquid chromatography mass spectrometry analysis.

Phillips HL, Williamson JC, van Elburg KA, Snijders AP, Wright PC, Dickman MJ.

Proteomics. 2010 Aug;10(16):2950-60. doi: 10.1002/pmic.200900669.

PMID:
20662100
16.

Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A.

Biochim Biophys Acta. 2015 May;1854(5):460-8. doi: 10.1016/j.bbapap.2015.01.006. Epub 2015 Jan 22.

PMID:
25619855
17.

Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.

Lin D, Li J, Slebos RJ, Liebler DC.

J Proteome Res. 2010 Oct 1;9(10):5461-72. doi: 10.1021/pr1007015.

18.
19.

Three-dimensional peptide fractionation for highly sensitive nanoscale LC-based shotgun proteomic analysis of complex protein mixtures.

Bandhakavi S, Markowski TW, Xie H, Griffin TJ.

Methods Mol Biol. 2011;790:47-56. doi: 10.1007/978-1-61779-319-6_4.

PMID:
21948405
20.

Analysis of gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry.

Lindner U, Lingott J, Richter S, Jiang W, Jakubowski N, Panne U.

Anal Bioanal Chem. 2015 Mar;407(9):2415-22. doi: 10.1007/s00216-014-8368-5. Epub 2014 Dec 9.

PMID:
25486924

Supplemental Content

Support Center