Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Hybrid rye performance under natural drought stress in Europe.

Hübner M, Wilde P, Schmiedchen B, Dopierala P, Gowda M, Reif JC, Miedaner T.

Theor Appl Genet. 2013 Feb;126(2):475-82. doi: 10.1007/s00122-012-1994-4. Epub 2012 Oct 23.

PMID:
23090142
2.

Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis.

Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN.

Theor Appl Genet. 2009 Dec;120(1):177-90. doi: 10.1007/s00122-009-1168-1. Epub 2009 Oct 17.

PMID:
19841886
3.

Mapping QTLs for plant phenology and production traits using indica rice (Oryza sativa L.) lines adapted to rainfed environment.

Suji KK, Biji KR, Poornima R, Prince KS, Amudha K, Kavitha S, Mankar S, Babu RC.

Mol Biotechnol. 2012 Oct;52(2):151-60. doi: 10.1007/s12033-011-9482-7.

PMID:
22198727
4.

Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.).

Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC.

BMC Genomics. 2012 Dec 17;13:706. doi: 10.1186/1471-2164-13-706.

5.

Enhancing drought tolerance in C(4) crops.

Lopes MS, Araus JL, van Heerden PD, Foyer CH.

J Exp Bot. 2011 May;62(9):3135-53. doi: 10.1093/jxb/err105. Epub 2011 Apr 21. Review.

PMID:
21511912
6.

QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

Dixit S, Huang BE, Sta Cruz MT, Maturan PT, Ontoy JC, Kumar A.

PLoS One. 2014 Oct 14;9(10):e109574. doi: 10.1371/journal.pone.0109574. eCollection 2014.

7.

Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress.

Sandhu N, Singh A, Dixit S, Sta Cruz MT, Maturan PC, Jain RK, Kumar A.

BMC Genet. 2014 May 27;15:63. doi: 10.1186/1471-2156-15-63.

8.

QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance.

Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R.

Theor Appl Genet. 2013 Mar;126(3):583-600. doi: 10.1007/s00122-012-2003-7. Epub 2012 Nov 4.

9.

Quantitative trait loci associated with drought tolerance at reproductive stage in rice.

Lanceras JC, Pantuwan G, Jongdee B, Toojinda T.

Plant Physiol. 2004 May;135(1):384-99. Epub 2004 Apr 30.

10.

Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities.

Dixit S, Singh A, Sta Cruz MT, Maturan PT, Amante M, Kumar A.

BMC Genet. 2014 Feb 3;15:16. doi: 10.1186/1471-2156-15-16.

11.

Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).

Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL.

Genome. 2017 Jan;60(1):26-45. doi: 10.1139/gen-2016-0017. Epub 2016 Sep 15.

PMID:
27996306
12.

qDTY12.1: a locus with a consistent effect on grain yield under drought in rice.

Mishra KK, Vikram P, Yadaw RB, Swamy BP, Dixit S, Cruz MT, Maturan P, Marker S, Kumar A.

BMC Genet. 2013 Feb 26;14:12. doi: 10.1186/1471-2156-14-12.

13.

Inducing drought tolerance in plants: recent advances.

Ashraf M.

Biotechnol Adv. 2010 Jan-Feb;28(1):169-83. doi: 10.1016/j.biotechadv.2009.11.005. Review.

PMID:
19914371
14.

Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios.

Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F.

Plant Physiol. 2016 Oct;172(2):749-764. Epub 2016 Jul 19.

15.

Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits.

Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS.

PLoS One. 2015 May 13;10(5):e0122165. doi: 10.1371/journal.pone.0122165. eCollection 2015.

16.

Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.

Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R.

BMC Plant Biol. 2011 Apr 22;11:70. doi: 10.1186/1471-2229-11-70.

17.

Drought yield index to select high yielding rice lines under different drought stress severities.

Raman A, Verulkar S, Mandal N, Variar M, Shukla V, Dwivedi J, Singh B, Singh O, Swain P, Mall A, Robin S, Chandrababu R, Jain A, Ram T, Hittalmani S, Haefele S, Piepho HP, Kumar A.

Rice (N Y). 2012 Dec;5(1):31. doi: 10.1186/1939-8433-5-31. Epub 2012 Oct 4.

18.

qDTY₁.₁, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds.

Vikram P, Swamy BP, Dixit S, Ahmed HU, Teresa Sta Cruz M, Singh AK, Kumar A.

BMC Genet. 2011 Oct 18;12:89. doi: 10.1186/1471-2156-12-89.

19.

QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes.

Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K.

J Appl Genet. 2017 Feb;58(1):49-65. doi: 10.1007/s13353-016-0363-4. Epub 2016 Aug 9.

20.

Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns.

Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL.

New Phytol. 2014 Aug;203(3):817-30. doi: 10.1111/nph.12869. Epub 2014 Jun 4.

Supplemental Content

Support Center