Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207.

Biukovic G, Basak S, Manimekalai MS, Rishikesan S, Roessle M, Dick T, Rao SP, Hunke C, Grüber G.

Antimicrob Agents Chemother. 2013 Jan;57(1):168-76. doi: 10.1128/AAC.01039-12. Epub 2012 Oct 22.

2.

Solution structure of subunit γ (γ(1-204)) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of γ(165-178), representing a novel TB drug target.

Priya R, Biuković G, Manimekalai MS, Lim J, Rao SP, Grüber G.

J Bioenerg Biomembr. 2013 Feb;45(1-2):121-9. doi: 10.1007/s10863-012-9486-4. Epub 2012 Oct 27.

PMID:
23104121
3.

New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure.

Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S.

Antimicrob Agents Chemother. 2012 May;56(5):2326-34. doi: 10.1128/AAC.06154-11. Epub 2012 Feb 21.

4.

Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.

Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D.

PLoS One. 2011;6(8):e23575. doi: 10.1371/journal.pone.0023575. Epub 2011 Aug 17.

5.
6.

The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation.

Ragunathan P, Sielaff H, Sundararaman L, Biuković G, Subramanian Manimekalai MS, Singh D, Kundu S, Wohland T, Frasch W, Dick T, Grüber G.

J Biol Chem. 2017 Jul 7;292(27):11262-11279. doi: 10.1074/jbc.M117.784959. Epub 2017 May 11.

PMID:
28495884
7.

A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values.

McMillan DG, Keis S, Dimroth P, Cook GM.

J Biol Chem. 2007 Jun 15;282(24):17395-404. Epub 2007 Apr 13.

8.
9.

TMC207: the first compound of a new class of potent anti-tuberculosis drugs.

Matteelli A, Carvalho AC, Dooley KE, Kritski A.

Future Microbiol. 2010 Jun;5(6):849-58. doi: 10.2217/fmb.10.50. Review.

10.

Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.

Bulygin VV, Duncan TM, Cross RL.

J Biol Chem. 2004 Aug 20;279(34):35616-21. Epub 2004 Jun 15.

11.

Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus.

Pogoryelov D, Nikolaev Y, Schlattner U, Pervushin K, Dimroth P, Meier T.

FEBS J. 2008 Oct;275(19):4850-62. doi: 10.1111/j.1742-4658.2008.06623.x. Epub 2008 Aug 21.

12.

Diarylquinolines target subunit c of mycobacterial ATP synthase.

Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K.

Nat Chem Biol. 2007 Jun;3(6):323-4. Epub 2007 May 13.

PMID:
17496888
14.

Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.

Baig IA, Moon JY, Lee SC, Ryoo SW, Yoon MY.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1338-50. doi: 10.1016/j.bbapap.2015.05.003. Epub 2015 May 16.

PMID:
25988243
15.

Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit.

Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D.

J Mol Biol. 2005 Aug 26;351(4):824-38.

PMID:
16045926
17.

The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

Singh D, Sielaff H, Sundararaman L, Bhushan S, Grüber G.

Biochim Biophys Acta. 2016 Feb;1857(2):177-87. doi: 10.1016/j.bbabio.2015.12.003. Epub 2015 Dec 9.

18.

ATP synthases: insights into their motor functions from sequence and structural analyses.

Hong S, Pedersen PL.

J Bioenerg Biomembr. 2003 Apr;35(2):95-120.

PMID:
12887009
20.

Supplemental Content

Support Center