Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 235

1.

Myeloperoxidase-derived oxidants modify apolipoprotein A-I and generate dysfunctional high-density lipoproteins: comparison of hypothiocyanous acid (HOSCN) with hypochlorous acid (HOCl).

Hadfield KA, Pattison DI, Brown BE, Hou L, Rye KA, Davies MJ, Hawkins CL.

Biochem J. 2013 Jan 15;449(2):531-42. doi: 10.1042/BJ20121210.

PMID:
23088652
2.

Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis.

Ismael FO, Proudfoot JM, Brown BE, van Reyk DM, Croft KD, Davies MJ, Hawkins CL.

Arch Biochem Biophys. 2015 May 1;573:40-51. doi: 10.1016/j.abb.2015.03.008. Epub 2015 Mar 18.

PMID:
25795019
3.

Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.

Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL.

Free Radic Biol Med. 2013 Dec;65:1352-62. doi: 10.1016/j.freeradbiomed.2013.10.007. Epub 2013 Oct 10.

PMID:
24120969
4.

Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.

Pattison DI, Davies MJ, Hawkins CL.

Free Radic Res. 2012 Aug;46(8):975-95. doi: 10.3109/10715762.2012.667566. Epub 2012 Apr 23. Review.

PMID:
22348603
5.
6.

Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation.

Hawkins CL, Pattison DI, Stanley NR, Davies MJ.

Biochem J. 2008 Dec 15;416(3):441-52. doi: 10.1042/BJ20070941.

PMID:
18652572
8.

Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid.

Lloyd MM, van Reyk DM, Davies MJ, Hawkins CL.

Biochem J. 2008 Sep 1;414(2):271-80. doi: 10.1042/BJ20080468.

PMID:
18459943
9.

Hypochlorite modification of high density lipoprotein: effects on cholesterol efflux from J774 macrophages.

Bergt C, Reicher H, Malle E, Sattler W.

FEBS Lett. 1999 Jun 11;452(3):295-300.

10.

What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach.

Pattison DI, Hawkins CL, Davies MJ.

Chem Res Toxicol. 2009 May;22(5):807-17. doi: 10.1021/tx800372d.

PMID:
19326902
11.

The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

Talib J, Kwan J, Suryo Rahmanto A, Witting PK, Davies MJ.

Biochem J. 2014 Jan 1;457(1):89-97. doi: 10.1042/BJ20131135.

PMID:
24112082
12.

Oxidation of methionine residues to methionine sulfoxides does not decrease potential antiatherogenic properties of apolipoprotein A-I.

Panzenböck U, Kritharides L, Raftery M, Rye KA, Stocker R.

J Biol Chem. 2000 Jun 30;275(26):19536-44.

13.

Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages.

Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL.

Free Radic Biol Med. 2016 May;94:88-98. doi: 10.1016/j.freeradbiomed.2016.02.016. Epub 2016 Feb 17.

PMID:
26898502
14.
15.

Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells.

Cook NL, Viola HM, Sharov VS, Hool LC, Schöneich C, Davies MJ.

Free Radic Biol Med. 2012 Mar 1;52(5):951-61. doi: 10.1016/j.freeradbiomed.2011.12.001. Epub 2011 Dec 23.

16.

High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine.

Talib J, Pattison DI, Harmer JA, Celermajer DS, Davies MJ.

Free Radic Biol Med. 2012 Jul 1;53(1):20-9. doi: 10.1016/j.freeradbiomed.2012.04.018. Epub 2012 Apr 27.

PMID:
22609005
17.

Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage.

Skaff O, Pattison DI, Morgan PE, Bachana R, Jain VK, Priyadarsini KI, Davies MJ.

Biochem J. 2012 Jan 1;441(1):305-16. doi: 10.1042/BJ20101762.

18.

Apolipoprotein A-I structural modification and the functionality of reconstituted high density lipoprotein particles in cellular cholesterol efflux.

Gillotte KL, Davidson WS, Lund-Katz S, Rothblat GH, Phillips MC.

J Biol Chem. 1996 Sep 27;271(39):23792-8.

20.

Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity.

Cukier AMO, Therond P, Didichenko SA, Guillas I, Chapman MJ, Wright SD, Kontush A.

Biochim Biophys Acta. 2017 Sep;1862(9):890-900. doi: 10.1016/j.bbalip.2017.05.010. Epub 2017 May 18.

PMID:
28529180

Supplemental Content

Support Center