Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Identification and characterization of a highly conserved crenarchaeal protein lysine methyltransferase with broad substrate specificity.

Chu Y, Zhang Z, Wang Q, Luo Y, Huang L.

J Bacteriol. 2012 Dec;194(24):6917-26. doi: 10.1128/JB.01535-12. Epub 2012 Oct 19.

2.

aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism.

Chu Y, Zhu Y, Chen Y, Li W, Zhang Z, Liu D, Wang T, Ma J, Deng H, Liu ZJ, Ouyang S, Huang L.

Mol Cell Proteomics. 2016 Sep;15(9):2908-23. doi: 10.1074/mcp.M115.057778. Epub 2016 Jun 21.

3.

A prototypic lysine methyltransferase 4 from archaea with degenerate sequence specificity methylates chromatin proteins Sul7d and Cren7 in different patterns.

Niu Y, Xia Y, Wang S, Li J, Niu C, Li X, Zhao Y, Xiong H, Li Z, Lou H, Cao Q.

J Biol Chem. 2013 May 10;288(19):13728-40. doi: 10.1074/jbc.M113.452979. Epub 2013 Mar 25.

6.

Lysine methylation mapping of crenarchaeal DNA-directed RNA polymerases by collision-induced and electron-transfer dissociation mass spectrometry.

Azkargorta M, Wojtas MN, Abrescia NG, Elortza F.

J Proteome Res. 2014 May 2;13(5):2637-48. doi: 10.1021/pr500084p. Epub 2014 Mar 27.

PMID:
24625205
7.

Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea.

Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L.

Nucleic Acids Res. 2008 Mar;36(4):1129-37. Epub 2007 Dec 20.

8.

Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity.

Albers SV, Szabó Z, Driessen AJ.

J Bacteriol. 2003 Jul;185(13):3918-25.

9.

Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet.

Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y.

EMBO J. 2003 Jan 15;22(2):292-303.

10.

Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes.

Botting CH, Talbot P, Paytubi S, White MF.

Archaea. 2010 Aug 5;2010. pii: 106341. doi: 10.1155/2010/106341.

11.
12.

Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2.

Wu H, Siarheyeva A, Zeng H, Lam R, Dong A, Wu XH, Li Y, Schapira M, Vedadi M, Min J.

FEBS Lett. 2013 Nov 29;587(23):3859-68.

13.

Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase.

Qian C, Wang X, Manzur K, Sachchidanand, Farooq A, Zeng L, Wang R, Zhou MM.

J Mol Biol. 2006 May 26;359(1):86-96. Epub 2006 Mar 20.

PMID:
16603186
14.

SET domain protein lysine methyltransferases: Structure, specificity and catalysis.

Qian C, Zhou MM.

Cell Mol Life Sci. 2006 Dec;63(23):2755-63. Review.

PMID:
17013555
15.

First crenarchaeal chitinase found in Sulfolobus tokodaii.

Staufenberger T, Imhoff JF, Labes A.

Microbiol Res. 2012 May 20;167(5):262-9. doi: 10.1016/j.micres.2011.11.001. Epub 2011 Dec 7.

16.

Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases.

Currie MA, Brown G, Wong A, Ohira T, Sugiyama K, Suzuki T, Yakunin AF, Jia Z.

RNA. 2017 Mar;23(3):346-354. doi: 10.1261/rna.057943.116. Epub 2016 Dec 8.

PMID:
27932585
17.

A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3.

Manzur KL, Farooq A, Zeng L, Plotnikova O, Koch AW, Sachchidanand, Zhou MM.

Nat Struct Biol. 2003 Mar;10(3):187-96.

PMID:
12567185
18.

Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity.

Guo HB, Guo H.

Proc Natl Acad Sci U S A. 2007 May 22;104(21):8797-802. Epub 2007 May 15.

19.

Archaeal eukaryote-like serine/threonine protein kinase interacts with and phosphorylates a forkhead-associated-domain-containing protein.

Wang B, Yang S, Zhang L, He ZG.

J Bacteriol. 2010 Apr;192(7):1956-64. doi: 10.1128/JB.01471-09. Epub 2010 Jan 29.

Supplemental Content

Support Center