Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy.

Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA.

Biomaterials. 2013 Jan;34(2):413-21. doi: 10.1016/j.biomaterials.2012.09.052.

2.

Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels.

Zhu M, Feng Q, Bian L.

Acta Biomater. 2014 Mar;10(3):1333-40. doi: 10.1016/j.actbio.2013.12.015.

PMID:
24342044
3.

Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo.

Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA.

Biomaterials. 2011 Sep;32(27):6425-34. doi: 10.1016/j.biomaterials.2011.05.033.

4.

Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels.

Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA.

Tissue Eng Part A. 2012 Apr;18(7-8):715-24. doi: 10.1089/ten.TEA.2011.0455.

5.

Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels.

Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL.

Osteoarthritis Cartilage. 2009 Dec;17(12):1639-48. doi: 10.1016/j.joca.2009.07.003.

6.
7.

Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.

Toh WS, Lim TC, Kurisawa M, Spector M.

Biomaterials. 2012 May;33(15):3835-45. doi: 10.1016/j.biomaterials.2012.01.065.

PMID:
22369963
8.

Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

Ha CW, Park YB, Chung JY, Park YG.

Stem Cells Transl Med. 2015 Sep;4(9):1044-51. doi: 10.5966/sctm.2014-0264.

9.

Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.

Chung C, Burdick JA.

Tissue Eng Part A. 2009 Feb;15(2):243-54. doi: 10.1089/ten.tea.2008.0067.

10.

High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties.

Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL.

Acta Biomater. 2012 Aug;8(8):3027-34. doi: 10.1016/j.actbio.2012.04.033.

11.

Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel.

Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, Park SR.

Artif Organs. 2013 Jul;37(7):648-55. doi: 10.1111/aor.12041.

PMID:
23495957
12.

Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels.

Erickson IE, Huang AH, Chung C, Li RT, Burdick JA, Mauck RL.

Tissue Eng Part A. 2009 May;15(5):1041-52. doi: 10.1089/ten.tea.2008.0099.

13.

Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis.

Bian L, Guvendiren M, Mauck RL, Burdick JA.

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10117-22. doi: 10.1073/pnas.1214100110.

14.

3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells.

Jung H, Park JS, Yeom J, Selvapalam N, Park KM, Oh K, Yang JA, Park KH, Hahn SK, Kim K.

Biomacromolecules. 2014 Mar 10;15(3):707-14. doi: 10.1021/bm401123m.

PMID:
24605794
15.

Hyaluronic acid-binding scaffold for articular cartilage repair.

Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, Elisseeff JH.

Tissue Eng Part A. 2012 Dec;18(23-24):2497-506. doi: 10.1089/ten.TEA.2011.0711.

16.

Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent.

Erickson IE, van Veen SC, Sengupta S, Kestle SR, Mauck RL.

Clin Orthop Relat Res. 2011 Oct;469(10):2744-53. doi: 10.1007/s11999-011-1869-z.

17.

Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent.

de Vries-van Melle ML, Tihaya MS, Kops N, Koevoet WJ, Murphy JM, Verhaar JA, Alini M, Eglin D, van Osch GJ.

Eur Cell Mater. 2014 Feb 3;27:112-23; discussion 123.

18.

Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.

Frith JE, Menzies DJ, Cameron AR, Ghosh P, Whitehead DL, Gronthos S, Zannettino AC, Cooper-White JJ.

Biomaterials. 2014 Jan;35(4):1150-62. doi: 10.1016/j.biomaterials.2013.10.056.

PMID:
24215733
19.

The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells.

Chung C, Beecham M, Mauck RL, Burdick JA.

Biomaterials. 2009 Sep;30(26):4287-96. doi: 10.1016/j.biomaterials.2009.04.040.

20.

Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement.

Saxena V, Kim M, Keah NM, Neuwirth AL, Stoeckl BD, Bickard K, Restle DJ, Salowe R, Wang MY, Steinberg DR, Mauck RL.

Tissue Eng Part A. 2016 Feb;22(3-4):386-95. doi: 10.1089/ten.tea.2015.0384.

PMID:
26871863
Items per page

Supplemental Content

Support Center