Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors.

Lu X, Yu M, Wang G, Zhai T, Xie S, Ling Y, Tong Y, Li Y.

Adv Mater. 2013 Jan 11;25(2):267-72. doi: 10.1002/adma.201203410. Epub 2012 Oct 19.

PMID:
23080535
2.

WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.

Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J, Tong Y, Wang ZL.

Adv Mater. 2012 Feb 14;24(7):938-44.

PMID:
22403832
3.

Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

Li Y, Mei Y, Zhang LQ, Wang JH, Liu AR, Zhang YJ, Liu SQ.

J Colloid Interface Sci. 2015 Oct 1;455:188-93. doi: 10.1016/j.jcis.2015.04.070. Epub 2015 May 27.

PMID:
26070189
4.

Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes.

Yu L, Zhang G, Yuan C, Lou XW.

Chem Commun (Camb). 2013 Jan 7;49(2):137-9. doi: 10.1039/c2cc37117k. Epub 2012 Nov 20.

PMID:
23169236
5.

Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH.

Adv Mater. 2013 Sep 14;25(34):4746-52. doi: 10.1002/adma.201204949. Epub 2013 May 29.

PMID:
23716319
6.

Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.

Duay J, Gillette E, Liu R, Lee SB.

Phys Chem Chem Phys. 2012 Mar 14;14(10):3329-37. doi: 10.1039/c2cp00019a. Epub 2012 Feb 1.

PMID:
22298230
7.

One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

Liu M, Tjiu WW, Pan J, Zhang C, Gao W, Liu T.

Nanoscale. 2014 Apr 21;6(8):4233-42. doi: 10.1039/c3nr06650a.

PMID:
24608664
8.

Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.

Kong D, Ren W, Cheng C, Wang Y, Huang Z, Yang HY.

ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21334-46. doi: 10.1021/acsami.5b05908. Epub 2015 Sep 21.

PMID:
26372533
9.

Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/Poly(3,4-ethylenedioxythiophene) nanowires.

Liu R, Duay J, Lee SB.

ACS Nano. 2011 Jul 26;5(7):5608-19. doi: 10.1021/nn201106j. Epub 2011 Jun 15.

PMID:
21661749
10.

Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

Yuan L, Lu XH, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang ZL.

ACS Nano. 2012 Jan 24;6(1):656-61. doi: 10.1021/nn2041279. Epub 2011 Dec 19.

PMID:
22182051
11.

Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors.

Wang J, Zhang L, Liu X, Zhang X, Tian Y, Liu X, Zhao J, Li Y.

Sci Rep. 2017 Jan 20;7:41088. doi: 10.1038/srep41088.

PMID:
28106170
12.

Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.

Zhang L, Zhu P, Zhou F, Zeng W, Su H, Li G, Gao J, Sun R, Wong CP.

ACS Nano. 2016 Jan 26;10(1):1273-82. doi: 10.1021/acsnano.5b06648. Epub 2015 Dec 22.

PMID:
26694704
13.

Hydrogenated TiO2 nanotube arrays for supercapacitors.

Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y.

Nano Lett. 2012 Mar 14;12(3):1690-6. doi: 10.1021/nl300173j. Epub 2012 Mar 5.

PMID:
22364294
14.

Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.

Chou TC, Doong RA, Hu CC, Zhang B, Su DS.

ChemSusChem. 2014 Mar;7(3):841-7. doi: 10.1002/cssc.201301014. Epub 2014 Feb 6.

PMID:
24504702
15.

Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.

Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, Ruoff RS.

ACS Nano. 2012 Jun 26;6(6):5404-12. doi: 10.1021/nn3012916. Epub 2012 May 10.

PMID:
22554307
16.

Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties.

Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB.

ACS Nano. 2013 Feb 26;7(2):1200-14. doi: 10.1021/nn3056077. Epub 2013 Jan 24.

PMID:
23327566
17.

Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

Tan Y, Xu C, Chen G, Liu Z, Ma M, Xie Q, Zheng N, Yao S.

ACS Appl Mater Interfaces. 2013 Mar;5(6):2241-8. doi: 10.1021/am400001g. Epub 2013 Mar 6.

PMID:
23425031
18.

Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials.

Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ.

Adv Mater. 2011 May 10;23(18):2076-81. doi: 10.1002/adma.201100058. Epub 2011 Mar 17. No abstract available.

PMID:
21413085
19.
20.

Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E.

ACS Nano. 2013 Jan 22;7(1):174-82. doi: 10.1021/nn304833s. Epub 2012 Dec 31.

PMID:
23249211

Supplemental Content

Support Center