Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits.

Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG.

New Phytol. 2012 Dec;196(4):1240-50. doi: 10.1111/j.1469-8137.2012.04370.x.

2.

Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species.

Herben T, Suda J, Klimesová J, Mihulka S, Ríha P, Símová I.

Ann Bot. 2012 Nov;110(7):1357-67. doi: 10.1093/aob/mcs099.

3.

Mycorrhizal symbiosis stimulates endoreduplication in angiosperms.

Bainard LD, Bainard JD, Newmaster SG, Klironomos JN.

Plant Cell Environ. 2011 Sep;34(9):1577-85. doi: 10.1111/j.1365-3040.2011.02354.x.

4.

Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.

Rewers M, Sliwinska E.

Cytometry A. 2012 Dec;81(12):1067-75. doi: 10.1002/cyto.a.22202.

5.

Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits.

Reinhart KO, Wilson GW, Rinella MJ.

Ecol Lett. 2012 Jul;15(7):689-95. doi: 10.1111/j.1461-0248.2012.01786.x.

PMID:
22507627
6.

Genome size is a strong predictor of cell size and stomatal density in angiosperms.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA.

New Phytol. 2008;179(4):975-86. doi: 10.1111/j.1469-8137.2008.02528.x.

7.

Genome size evolution in relation to leaf strategy and metabolic rates revisited.

Beaulieu JM, Leitch IJ, Knight CA.

Ann Bot. 2007 Mar;99(3):495-505.

8.
9.

Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set.

Walls RL.

Am J Bot. 2011 Feb;98(2):244-53. doi: 10.3732/ajb.1000154.

10.

Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach.

Balao F, Herrera J, Talavera S.

New Phytol. 2011 Oct;192(1):256-65. doi: 10.1111/j.1469-8137.2011.03787.x.

11.
12.
13.

Genome size scaling through phenotype space.

Knight CA, Beaulieu JM.

Ann Bot. 2008 Apr;101(6):759-66. doi: 10.1093/aob/mcm321.

14.

Nuclear DNA content variation and evolution in liverworts.

Bainard JD, Forrest LL, Goffinet B, Newmaster SG.

Mol Phylogenet Evol. 2013 Sep;68(3):619-27. doi: 10.1016/j.ympev.2013.04.008.

PMID:
23624193
15.

Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.

Kang M, Tao J, Wang J, Ren C, Qi Q, Xiang QY, Huang H.

New Phytol. 2014 Jun;202(4):1371-81. doi: 10.1111/nph.12726.

16.

Variable changes in genome size associated with different polyploid events in Plantago (Plantaginaceae).

Wong C, Murray BG.

J Hered. 2012 Sep-Oct;103(5):711-9. doi: 10.1093/jhered/ess049.

PMID:
22945947
17.

Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups.

Chrtek J Jr, Zahradnícek J, Krak K, Fehrer J.

Ann Bot. 2009 Jul;104(1):161-78. doi: 10.1093/aob/mcp107.

18.

Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.

Roddy AB, Guilliams CM, Lilittham T, Farmer J, Wormser V, Pham T, Fine PV, Feild TS, Dawson TE.

J Exp Bot. 2013 Oct;64(13):4081-8. doi: 10.1093/jxb/ert247.

PMID:
23963676
19.

Using flow cytometry to estimate pollen DNA content: improved methodology and applications.

Kron P, Husband BC.

Ann Bot. 2012 Oct;110(5):1067-78. doi: 10.1093/aob/mcs167.

20.

Discriminating the effects of phylogenetic hypothesis, tree resolution and clade age estimates on phylogenetic signal measurements.

Seger GD, Duarte LD, Debastiani VJ, Kindel A, Jarenkow JA.

Plant Biol (Stuttg). 2013 Sep;15(5):858-67. doi: 10.1111/j.1438-8677.2012.00699.x.

PMID:
23368095
Items per page

Supplemental Content

Support Center