Warning: The NCBI web site requires JavaScript to function. more...
Generate a file for use with external citation management software.
Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy.
Barkelid M, Steele GA, Zwiller V.
Nano Lett. 2012 Nov 14;12(11):5649-53. doi: 10.1021/nl302789k. Epub 2012 Oct 18.
Similar articles
Photophysics of individual single-walled carbon nanotubes.
Carlson LJ, Krauss TD.
Acc Chem Res. 2008 Feb;41(2):235-43. doi: 10.1021/ar700136v.
Quantum efficiency and capture cross section of first and second excitonic transitions of single-walled carbon nanotubes measured through photoconductivity.
Malapanis A, Perebeinos V, Sinha DP, Comfort E, Lee JU.
Nano Lett. 2013 Aug 14;13(8):3531-8. doi: 10.1021/nl400939b. Epub 2013 Aug 2.
Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes.
Blancon JC, Paillet M, Tran HN, Than XT, Guebrou SA, Ayari A, San Miguel A, Phan NM, Zahab AA, Sauvajol JL, Del Fatti N, Vallée F.
Nat Commun. 2013;4:2542. doi: 10.1038/ncomms3542.
Systematic determination of absolute absorption cross-section of individual carbon nanotubes.
Liu K, Hong X, Choi S, Jin C, Capaz RB, Kim J, Wang W, Bai X, Louie SG, Wang E, Wang F.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7564-9. doi: 10.1073/pnas.1318851111. Epub 2014 May 12.
A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
Chang SW, Hazra J, Amer M, Kapadia R, Cronin SB.
ACS Nano. 2015 Dec 22;9(12):11551-6. doi: 10.1021/acsnano.5b03873. Epub 2015 Oct 28.
Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
Kanemitsu Y.
Phys Chem Chem Phys. 2011 Sep 7;13(33):14879-88. doi: 10.1039/c1cp21235d. Epub 2011 Jul 7.
Alignment enhanced photoconductivity in single wall carbon nanotube films.
Liu Y, Lu S, Panchapakesan B.
Nanotechnology. 2009 Jan 21;20(3):035203. doi: 10.1088/0957-4484/20/3/035203. Epub 2008 Dec 16.
Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes.
Streit JK, Bachilo SM, Ghosh S, Lin CW, Weisman RB.
Nano Lett. 2014 Mar 12;14(3):1530-6. doi: 10.1021/nl404791y. Epub 2014 Feb 10.
Absorption spectroscopy of individual single-walled carbon nanotubes.
Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B.
Nano Lett. 2007 May;7(5):1203-7. Epub 2007 Mar 27.
Identifying [corrected] signatures of photothermal current in a double-gated semiconducting nanotube.
Buchs G, Bagiante S, Steele GA.
Nat Commun. 2014 Sep 19;5:4987. doi: 10.1038/ncomms5987. Erratum in: Nat Commun. 2015;6:5463.
The polarized carbon nanotube thin film LED.
Kinoshita M, Steiner M, Engel M, Small JP, Green AA, Hersam MC, Krupke R, Mendez EE, Avouris P.
Opt Express. 2010 Dec 6;18(25):25738-45. doi: 10.1364/OE.18.025738.
Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy.
Strano MS.
J Am Chem Soc. 2003 Dec 24;125(51):16148-53.
Excitonic absorption intensity of semiconducting and metallic carbon nanotubes.
Verdenhalven E, Malić E.
J Phys Condens Matter. 2013 Jun 19;25(24):245302. doi: 10.1088/0953-8984/25/24/245302. Epub 2013 May 24.
An atlas of carbon nanotube optical transitions.
Liu K, Deslippe J, Xiao F, Capaz RB, Hong X, Aloni S, Zettl A, Wang W, Bai X, Louie SG, Wang E, Wang F.
Nat Nanotechnol. 2012 Apr 15;7(5):325-9. doi: 10.1038/nnano.2012.52.
Length-dependent optical effects in single-wall carbon nanotubes.
Fagan JA, Simpson JR, Bauer BJ, Lacerda SH, Becker ML, Chun J, Migler KB, Walker AR, Hobbie EK.
J Am Chem Soc. 2007 Aug 29;129(34):10607-12. Epub 2007 Aug 2.
Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes.
Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL.
Science. 2009 Sep 11;325(5946):1367-71. doi: 10.1126/science.1176112.
The optical resonances in carbon nanotubes arise from excitons.
Wang F, Dukovic G, Brus LE, Heinz TF.
Science. 2005 May 6;308(5723):838-41. Erratum in: Science. 2005 Sep 9;309(5741):1677.
Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions.
Aspitarte L, McCulley DR, Minot ED.
Nano Lett. 2016 Sep 14;16(9):5589-93. doi: 10.1021/acs.nanolett.6b02148. Epub 2016 Sep 2.
Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
Kim UJ, Lee EH, Kim JM, Min YS, Kim E, Park W.
Nanotechnology. 2009 Jul 22;20(29):295201. doi: 10.1088/0957-4484/20/29/295201. Epub 2009 Jul 1.
Filters: Manage Filters