Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms.

Nischal S, Bhattacharyya S, Christopeit M, Yu Y, Zhou L, Bhagat TD, Sohal D, Will B, Mo Y, Suzuki M, Pardanani A, McDevitt M, Maciejewski JP, Melnick AM, Greally JM, Steidl U, Moliterno A, Verma A.

Cancer Res. 2013 Feb 1;73(3):1076-85. doi: 10.1158/0008-5472.CAN-12-0735. Epub 2012 Oct 11.

2.

Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms.

Vainchenker W, Kralovics R.

Blood. 2017 Feb 9;129(6):667-679. doi: 10.1182/blood-2016-10-695940. Epub 2016 Dec 27. Review.

PMID:
28028029
3.

TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.

Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A, Li CY, Hanson CA, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland DG, Levine RL.

Leukemia. 2009 May;23(5):905-11. doi: 10.1038/leu.2009.47. Epub 2009 Mar 5.

4.

Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis.

Song J, Hussaini M, Zhang H, Shao H, Qin D, Zhang X, Ma Z, Hussnain Naqvi SM, Zhang L, Moscinski LC.

Am J Clin Pathol. 2017 May 1;147(5):444-452. doi: 10.1093/ajcp/aqw222.

5.

Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes.

Stein BL, Williams DM, O'Keefe C, Rogers O, Ingersoll RG, Spivak JL, Verma A, Maciejewski JP, McDevitt MA, Moliterno AR.

Haematologica. 2011 Oct;96(10):1462-9. doi: 10.3324/haematol.2011.045591. Epub 2011 Jun 28.

7.

Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera.

Delic S, Rose D, Kern W, Nadarajah N, Haferlach C, Haferlach T, Meggendorfer M.

Br J Haematol. 2016 Nov;175(3):419-426. doi: 10.1111/bjh.14269. Epub 2016 Jul 22.

PMID:
27447873
8.

IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis.

Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, Caramazza D, Pieri L, Finke CM, Kilpivaara O, Wadleigh M, Mai M, McClure RF, Gilliland DG, Levine RL, Pardanani A, Vannucchi AM.

Leukemia. 2010 Jul;24(7):1302-9. doi: 10.1038/leu.2010.113. Epub 2010 May 27.

9.

Myeloproliferative neoplasms: Current molecular biology and genetics.

Saeidi K.

Crit Rev Oncol Hematol. 2016 Feb;98:375-89. doi: 10.1016/j.critrevonc.2015.11.004. Epub 2015 Nov 28. Review.

PMID:
26697989
10.

[Research progress on molecular pathogenesis of myeloproliferative neoplasms].

Liu L, Xiao ZJ.

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2011 Feb;19(1):239-43. Review. Chinese.

PMID:
21362261
11.

Methylation of TET2, CBL and CEBPA in Ph-negative myeloproliferative neoplasms.

Chim CS, Wan TS, Fung TK, Wong KF.

J Clin Pathol. 2010 Oct;63(10):942-6. doi: 10.1136/jcp.2010.080218. Epub 2010 Jul 29.

PMID:
20671051
12.

TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms.

Martínez-Avilés L, Besses C, Álvarez-Larrán A, Torres E, Serrano S, Bellosillo B.

Ann Hematol. 2012 Apr;91(4):533-41. doi: 10.1007/s00277-011-1330-0. Epub 2011 Sep 9.

PMID:
21904853
13.

[Significance of the JAK2V617F mutation in patients with chronic myeloproliferative neoplasia].

Iványi JL, Marton E, Plander M.

Orv Hetil. 2011 Nov 6;152(45):1795-803. doi: 10.1556/OH.2011.29226. Hungarian.

PMID:
22011365
14.

Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.

Duangnapasatit B, Rattarittamrong E, Rattanathammethee T, Hantrakool S, Chai-Adisaksopha C, Tantiworawit A, Norasetthada L.

Asian Pac J Cancer Prev. 2015;16(12):5013-8.

15.

Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?

Ahmed RZ, Rashid M, Ahmed N, Nadeem M, Shamsi TS.

Asian Pac J Cancer Prev. 2016;17(3):923-6. Review.

16.

Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders.

Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM, Goodeve AC, Bareford D, Harrison CN, Reilly JT, Green AR, Bench AJ.

Haematologica. 2008 Nov;93(11):1635-44. doi: 10.3324/haematol.13043. Epub 2008 Sep 24.

17.

EZH2 mutational status predicts poor survival in myelofibrosis.

Guglielmelli P, Biamonte F, Score J, Hidalgo-Curtis C, Cervantes F, Maffioli M, Fanelli T, Ernst T, Winkelman N, Jones AV, Zoi K, Reiter A, Duncombe A, Villani L, Bosi A, Barosi G, Cross NC, Vannucchi AM.

Blood. 2011 Nov 10;118(19):5227-34. doi: 10.1182/blood-2011-06-363424. Epub 2011 Sep 14.

18.

The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis--impact on disease phenotype.

Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC.

Eur J Haematol. 2007 Dec;79(6):508-15. Epub 2007 Oct 23.

PMID:
17961178
19.

A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2(V617F) and confers a proliferative potential on erythroid lineages.

Shen XH, Sun NN, Yin YF, Liu SF, Liu XL, Peng HL, Dai CW, Xu YX, Deng MY, Luo YY, Zheng WL, Zhang GS.

Oncotarget. 2016 Feb 23;7(8):9550-60. doi: 10.18632/oncotarget.7072.

20.

JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science.

Kilpivaara O, Levine RL.

Leukemia. 2008 Oct;22(10):1813-7. doi: 10.1038/leu.2008.229. Epub 2008 Aug 28. Review.

PMID:
18754026

Supplemental Content

Support Center