Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate.

Ye T, Xu B, Lin YL, Hu CY, Xia SJ, Lin L, Mwakagenda SA, Gao NY.

J Hazard Mater. 2012 Nov 30;241-242:348-54. doi: 10.1016/j.jhazmat.2012.09.046. Epub 2012 Sep 28.

PMID:
23062513
2.

Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

Ye T, Xu B, Lin YL, Hu CY, Lin L, Zhang TY, Gao NY.

Water Res. 2013 Jun 1;47(9):3006-14. doi: 10.1016/j.watres.2013.03.003. Epub 2013 Mar 15.

PMID:
23561492
3.

Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.

Allard S, Nottle CE, Chan A, Joll C, von Gunten U.

Water Res. 2013 Apr 15;47(6):1953-60. doi: 10.1016/j.watres.2012.12.002. Epub 2012 Dec 10.

PMID:
23351431
4.

A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

Zhang TY, Xu B, Hu CY, Lin YL, Lin L, Ye T, Tian FX.

Water Res. 2015 Jan 1;68:394-403.

PMID:
25462746
5.

Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.

Smith EM, Plewa MJ, Lindell CL, Richardson SD, Mitch WA.

Environ Sci Technol. 2010 Nov 15;44(22):8446-52. doi: 10.1021/es102746u. Epub 2010 Oct 21.

PMID:
20964286
6.

Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.

Wei X, Chen X, Wang X, Zheng W, Zhang D, Tian D, Jiang S, Ong CN, He G, Qu W.

PLoS One. 2013;8(3):e59677. doi: 10.1371/journal.pone.0059677. Epub 2013 Mar 26.

PMID:
23555742
7.

Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.

Zhao X, Salhi E, Liu H, Ma J, von Gunten U.

Environ Sci Technol. 2016 Apr 19;50(8):4358-65. doi: 10.1021/acs.est.6b00320. Epub 2016 Apr 7.

PMID:
27003721
8.

Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process.

Wang L, Kong D, Ji Y, Lu J, Yin X, Zhou Q.

Chemosphere. 2017 Aug;181:400-408. doi: 10.1016/j.chemosphere.2017.04.076. Epub 2017 Apr 19.

PMID:
28458215
9.

Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

Farré MJ, Day S, Neale PA, Stalter D, Tang JY, Escher BI.

Water Res. 2013 Sep 15;47(14):5409-21. doi: 10.1016/j.watres.2013.06.017. Epub 2013 Jun 19.

PMID:
23866154
10.

Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways.

Liu S, Li Z, Dong H, Goodman BA, Qiang Z.

J Hazard Mater. 2017 Jan 5;321:28-36. doi: 10.1016/j.jhazmat.2016.08.071. Epub 2016 Aug 30.

PMID:
27607930
11.

Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.

Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM.

Mutat Res. 2007 Nov-Dec;636(1-3):178-242. Epub 2007 Sep 12. Review.

PMID:
17980649
12.

[Effects of different pre-oxidants on DBPs formation potential by chlorination and chloramination of Yangtze River raw water].

Tian FX, Xu B, Rong R, Chen YY, Zhang TY, Zhu HZ.

Huan Jing Ke Xue. 2014 Feb;35(2):605-10. Chinese.

PMID:
24812954
13.

Occurrence of a new generation of disinfection byproducts.

Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD Jr.

Environ Sci Technol. 2006 Dec 1;40(23):7175-85.

PMID:
17180964
14.

Disinfection by-product formation during seawater desalination: A review.

Kim D, Amy GL, Karanfil T.

Water Res. 2015 Sep 15;81:343-55. doi: 10.1016/j.watres.2015.05.040. Epub 2015 Jun 9. Review.

PMID:
26099832
15.

Oxidation of As(III) by potassium permanganate.

Li N, Fan M, Van Leeuwen J, Saha B, Yang H, Huang CP.

J Environ Sci (China). 2007;19(7):783-6.

PMID:
17966863
16.

Reduction of lead oxide (PbO2) by iodide and formation of iodoform in the PbO2/I(-)/NOM system.

Lin YP, Washburn MP, Valentine RL.

Environ Sci Technol. 2008 Apr 15;42(8):2919-24.

PMID:
18497144
17.

Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide.

Gallard H, Allard S, Nicolau R, von Gunten U, Croué JP.

Environ Sci Technol. 2009 Sep 15;43(18):7003-9.

PMID:
19806734
18.

Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.

Pan Y, Li W, An H, Cui H, Wang Y.

Chemosphere. 2016 Feb;144:2312-20. doi: 10.1016/j.chemosphere.2015.11.012. Epub 2015 Nov 21.

PMID:
26606185
19.

The formation and control of emerging disinfection by-products of health concern.

Krasner SW.

Philos Trans A Math Phys Eng Sci. 2009 Oct 13;367(1904):4077-95. doi: 10.1098/rsta.2009.0108. Review.

PMID:
19736234
20.

Selection and applicability of quenching agents for the analysis of polar iodinated disinfection byproducts.

Gong T, Tao Y, Xian Q.

Chemosphere. 2016 Nov;163:359-65. doi: 10.1016/j.chemosphere.2016.08.052. Epub 2016 Aug 21.

PMID:
27557432

Supplemental Content

Support Center