Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Communication: Direct determination of triple-point coexistence through cell model simulation.

Heng VR, Nayhouse M, Crose M, Tran A, Orkoulas G.

J Chem Phys. 2012 Oct 14;137(14):141101. doi: 10.1063/1.4758698.

PMID:
23061831
2.

Simulation of phase boundaries using constrained cell models.

Nayhouse M, Heng VR, Amlani AM, Orkoulas G.

J Phys Condens Matter. 2012 Sep 19;24(37):375105. doi: 10.1088/0953-8984/24/37/375105. Epub 2012 Aug 1.

PMID:
22850590
3.

Precise simulation of the freezing transition of supercritical Lennard-Jones.

Nayhouse M, Amlani AM, Orkoulas G.

J Chem Phys. 2011 Oct 21;135(15):154103. doi: 10.1063/1.3651193.

PMID:
22029293
4.

Communication: phase transitions, criticality, and three-phase coexistence in constrained cell models.

Nayhouse M, Kwon JS, Orkoulas G.

J Chem Phys. 2012 May 28;136(20):201101. doi: 10.1063/1.4725768.

PMID:
22667533
5.

A Monte Carlo study of the freezing transition of hard spheres.

Nayhouse M, Amlani AM, Orkoulas G.

J Phys Condens Matter. 2011 Aug 17;23(32):325106. doi: 10.1088/0953-8984/23/32/325106. Epub 2011 Jul 28.

PMID:
21795778
6.

Simulation of fluid-solid coexistence via thermodynamic integration using a modified cell model.

Nayhouse M, Amlani AM, Heng VR, Orkoulas G.

J Phys Condens Matter. 2012 Apr 18;24(15):155101. doi: 10.1088/0953-8984/24/15/155101. Epub 2012 Feb 27.

PMID:
22366691
7.

Communication: A simple method for simulation of freezing transitions.

Orkoulas G, Nayhouse M.

J Chem Phys. 2011 May 7;134(17):171104. doi: 10.1063/1.3587103.

PMID:
21548664
8.

Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids.

Ahmed A, Sadus RJ.

J Chem Phys. 2009 Nov 7;131(17):174504. doi: 10.1063/1.3253686. Erratum in: J Chem Phys. 2010 Dec 14;133(22):229902.

PMID:
19895022
9.

Determination of the solid-fluid coexistence of the n - 6 Lennard-Jones system from free energy calculations.

Sousa JM, Ferreira AL, Barroso MA.

J Chem Phys. 2012 May 7;136(17):174502. doi: 10.1063/1.4707746.

PMID:
22583244
10.
11.
12.

Computer simulation of the phase diagram for a fluid confined in a fractal and disordered porous material.

De Grandis V, Gallo P, Rovere M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 1):061505. Epub 2004 Dec 16.

PMID:
15697372
13.

Melting point and phase diagram of methanol as obtained from computer simulations of the OPLS model.

Gonzalez Salgado D, Vega C.

J Chem Phys. 2010 Mar 7;132(9):094505. doi: 10.1063/1.3328667.

PMID:
20210403
14.

Communication: Tracing phase boundaries via molecular simulation: an alternative to the Gibbs-Duhem integration method.

Orkoulas G.

J Chem Phys. 2010 Sep 21;133(11):111104. doi: 10.1063/1.3486090.

PMID:
20866119
15.

A finite-size scaling study of a model of globular proteins.

Pagan DL, Gracheva ME, Gunton JD.

J Chem Phys. 2004 May 1;120(17):8292-8.

PMID:
15267750
16.

Toward a robust and general molecular simulation method for computing solid-liquid coexistence.

Eike DM, Brennecke JF, Maginn EJ.

J Chem Phys. 2005 Jan 1;122(1):14115.

PMID:
15638650
17.

The phase behavior of two-dimensional symmetrical mixtures in a weak external field of square symmetry.

Materniak S, Patrykiejew A, SokoĊ‚owski S.

J Chem Phys. 2011 Jun 7;134(21):214705. doi: 10.1063/1.3583984.

PMID:
21663373
18.

Triple point of Lennard-Jones fluid in slit nanopore: solidification of critical condensate.

Kanda H, Miyahara M, Higashitani K.

J Chem Phys. 2004 Apr 1;120(13):6173-9.

PMID:
15267503
19.
20.

Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.

Conde MM, Gonzalez MA, Abascal JL, Vega C.

J Chem Phys. 2013 Oct 21;139(15):154505. doi: 10.1063/1.4824627.

PMID:
24160525

Supplemental Content

Support Center