Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Miniaturized electroosmotic pump capable of generating pressures of more than 1200 bar.

Gu C, Jia Z, Zhu Z, He C, Wang W, Morgan A, Lu JJ, Liu S.

Anal Chem. 2012 Nov 6;84(21):9609-14. doi: 10.1021/ac3025703. Epub 2012 Oct 23.

PMID:
23061696
2.

Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations.

He C, Zhu Z, Gu C, Lu J, Liu S.

J Chromatogr A. 2012 Mar 2;1227:253-8. doi: 10.1016/j.chroma.2011.12.105. Epub 2012 Jan 9.

PMID:
22281507
3.

High-pressure open-channel on-chip electroosmotic pump for nanoflow high performance liquid chromatography.

Wang W, Gu C, Lynch KB, Lu JJ, Zhang Z, Pu Q, Liu S.

Anal Chem. 2014 Feb 18;86(4):1958-64. doi: 10.1021/ac4040345. Epub 2014 Feb 4.

4.

Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

Chen A, Lynch KB, Wang X, Lu JJ, Gu C, Liu S.

Anal Chim Acta. 2014 Sep 24;844:90-8. doi: 10.1016/j.aca.2014.06.042. Epub 2014 Jun 27.

PMID:
25172821
5.

Binary electroosmotic-pump nanoflow gradient generator for miniaturized high-performance liquid chromatography.

Zhou L, Lu JJ, Gu C, Liu S.

Anal Chem. 2014 Dec 16;86(24):12214-9. doi: 10.1021/ac503223r. Epub 2014 Nov 26.

PMID:
25401302
6.

Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions.

He C, Lu JJ, Jia Z, Wang W, Wang X, Dasgupta PK, Liu S.

Anal Chem. 2011 Apr 1;83(7):2430-3. doi: 10.1021/ac200156s. Epub 2011 Mar 4.

7.

An integrated micropump and electrospray emitter system based on porous silica monoliths.

Wang P, Chen Z, Chang HC.

Electrophoresis. 2006 Oct;27(20):3964-70.

PMID:
16983638
8.

Thermal expansion pump for capillary high-performance liquid chromatography.

Tao Q, Wu Q, Zhang X.

Anal Chem. 2010 Feb 1;82(3):842-7. doi: 10.1021/ac901855t.

PMID:
20050677
9.

Multiple open-channel electroosmotic pumping system for microfluidic sample handling.

Lazar IM, Karger BL.

Anal Chem. 2002 Dec 15;74(24):6259-68.

PMID:
12510747
10.

External electric field control of electroosmotic flow in non-coated and coated fused-silica capillaries and its application for capillary electrophoretic separations of peptides.

Kasicka V, Prusík Z, Sázelová P, Chiari M, Miksík I, Deyl Z.

J Chromatogr B Biomed Sci Appl. 2000 Apr 28;741(1):43-54.

PMID:
10839131
12.

Stability of alveolar capillary opening pressures.

Presson RG Jr, Okada O, Hanger CC, Godbey PS, Graham JA, Glenny RW, Capen RL, Wagner WW Jr.

J Appl Physiol (1985). 1994 Oct;77(4):1630-7.

PMID:
7836179
14.

A column capacity study of single, serial, and parallel linked rod monolithic high performance liquid chromatography columns.

Gray MJ, Slonecker PJ, Dennis G, Shalliker RA.

J Chromatogr A. 2005 Nov 25;1096(1-2):92-100. Epub 2005 Jul 19.

PMID:
16301072
15.
16.

Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Downscaling and application in medical research.

Sinner FM, Gatschelhofer C, Mautner A, Magnes C, Buchmeiser MR, Pieber TR.

J Chromatogr A. 2008 May 16;1191(1-2):274-81. doi: 10.1016/j.chroma.2008.01.005. Epub 2008 Jan 8.

PMID:
18242625
17.
18.

Reversed-phase electrochromatography of amino acids and peptides using porous polymer monoliths.

Shediac R, Ngola SM, Throckmorton DJ, Anex DS, Shepodd TJ, Singh AK.

J Chromatogr A. 2001 Aug 3;925(1-2):251-63.

PMID:
11519810
19.

Supplemental Content

Support Center