Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Characterization of ascorbate peroxidase in soybean under flooding and drought stresses.

Kausar R, Hossain Z, Makino T, Komatsu S.

Mol Biol Rep. 2012 Dec;39(12):10573-9. doi: 10.1007/s11033-012-1945-9. Epub 2012 Oct 7.

PMID:
23053956
2.

Characterization of proteins in soybean roots under flooding and drought stresses.

Oh M, Komatsu S.

J Proteomics. 2015 Jan 30;114:161-81. doi: 10.1016/j.jprot.2014.11.008. Epub 2014 Nov 20.

PMID:
25464361
3.

Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

Kamal AH, Komatsu S.

Mol Biol Rep. 2016 Feb;43(2):73-89. doi: 10.1007/s11033-015-3940-4. Epub 2016 Jan 11.

PMID:
26754663
4.

Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding.

Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, Yukawa K, Hachinohe M, Matsumoto H, Komatsu S.

Phytochemistry. 2008 Apr;69(6):1295-303. doi: 10.1016/j.phytochem.2008.01.007. Epub 2008 Mar 4.

PMID:
18308350
5.

The synthesis of cytosolic ascorbate peroxidases in germinating seeds and seedlings of soybean and their behavior under flooding stress.

Nishizawa K, Hiraga S, Yasue H, Chiba M, Tougou M, Nanjo Y, Komatsu S.

Biosci Biotechnol Biochem. 2013;77(11):2205-9. Epub 2013 Nov 7.

6.

Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

Kamal AH, Komatsu S.

J Proteome Res. 2015 May 1;14(5):2219-36. doi: 10.1021/acs.jproteome.5b00007. Epub 2015 Apr 1.

PMID:
25806999
7.

Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

Wang X, Oh M, Sakata K, Komatsu S.

J Proteomics. 2016 Jan 1;130:42-55. doi: 10.1016/j.jprot.2015.09.007. Epub 2015 Sep 12.

PMID:
26376099
8.

Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots.

Liu J, Wang X, Hu Y, Hu W, Bi Y.

Plant Cell Rep. 2013 Mar;32(3):415-29. doi: 10.1007/s00299-012-1374-1. Epub 2012 Dec 12.

PMID:
23233130
9.

Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

Mutava RN, Prince SJ, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT.

Plant Physiol Biochem. 2015 Jan;86:109-20. doi: 10.1016/j.plaphy.2014.11.010. Epub 2014 Nov 20.

PMID:
25438143
10.

Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C₄) and Cleome spinosa (C₃) under drought stress.

Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC.

Plant Sci. 2012 Jan;182:59-70. doi: 10.1016/j.plantsci.2011.03.015. Epub 2011 Apr 6.

PMID:
22118616
11.

Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.

Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham le H, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS.

PLoS One. 2012;7(11):e49522. doi: 10.1371/journal.pone.0049522. Epub 2012 Nov 19.

12.

Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions.

Kim YH, Jeong JC, Lee HS, Kwak SS.

Mol Biol Rep. 2013 Apr;40(4):2887-96. doi: 10.1007/s11033-012-2304-6. Epub 2012 Nov 27.

PMID:
23187736
13.

Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana.

Bhatt D, Saxena SC, Jain S, Dobriyal AK, Majee M, Arora S.

Mol Biol Rep. 2013 Feb;40(2):1155-65. doi: 10.1007/s11033-012-2157-z. Epub 2012 Oct 14.

PMID:
23065288
14.

Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.).

Devi R, Kaur N, Gupta AK.

Indian J Biochem Biophys. 2012 Aug;49(4):257-65.

PMID:
23077787
15.

A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana.

Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM.

J Plant Physiol. 2011 Jul 15;168(11):1241-8. doi: 10.1016/j.jplph.2011.01.016. Epub 2011 Mar 11.

PMID:
21397356
16.

Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation.

Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J.

J Plant Physiol. 2010 Oct 15;167(15):1248-52. doi: 10.1016/j.jplph.2010.04.011. Epub 2010 Jul 2.

PMID:
20713250
17.

Transcription factors expressed in soybean roots under drought stress.

Pereira SS, Guimarães FC, Carvalho JF, Stolf-Moreira R, Oliveira MC, Rolla AA, Farias JR, Neumaier N, Nepomuceno AL.

Genet Mol Res. 2011 Oct 21;10(4):3689-701. doi: 10.4238/2011.October.21.5.

18.

Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots.

Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H.

Plant Mol Biol. 2011 Oct;77(3):309-22. doi: 10.1007/s11103-011-9812-y. Epub 2011 Aug 3. Erratum in: Plant Mol Biol. 2012 Jan;78(1-2):197. Thibaut, Deschamps [corrected to Deschamps, Thibaut].

PMID:
21811849
19.

Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.

Khatoon A, Rehman S, Hiraga S, Makino T, Komatsu S.

J Proteomics. 2012 Oct 22;75(18):5706-23. doi: 10.1016/j.jprot.2012.07.031. Epub 2012 Jul 29.

PMID:
22850269
20.

Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings.

Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S.

Plant Mol Biol. 2011 Sep;77(1-2):129-44. doi: 10.1007/s11103-011-9799-4. Epub 2011 Jun 8.

PMID:
21656040

Supplemental Content

Support Center