Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose.

Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH.

Appl Microbiol Biotechnol. 2013 Jun;97(12):5381-8. doi: 10.1007/s00253-012-4412-6. Epub 2012 Sep 29.

PMID:
23053073
2.

Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose.

Kim IJ, Ko HJ, Kim TW, Choi IG, Kim KH.

Biotechnol Bioeng. 2013 Feb;110(2):401-7. doi: 10.1002/bit.24719. Epub 2012 Sep 18.

PMID:
22949138
3.

The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose.

Wang Q, Chen L, Lin H, Yu D, Shen Q, Wan L, Zhao Y.

Enzyme Microb Technol. 2016 Oct;92:67-75. doi: 10.1016/j.enzmictec.2016.06.017. Epub 2016 Jun 28.

PMID:
27542746
4.

Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose.

Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH.

Biotechnol Bioeng. 2009 Apr 1;102(5):1342-53. doi: 10.1002/bit.22193.

PMID:
19058186
5.

Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants.

Silveira RL, Skaf MS.

Phys Chem Chem Phys. 2016 Feb 7;18(5):3510-21. doi: 10.1039/c5cp06674c.

PMID:
26751268
6.

Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic Agro-industrial wastes.

Lin H, Shen Q, Zhan JM, Wang Q, Zhao YH.

PLoS One. 2013 Sep 23;8(9):e75022. doi: 10.1371/journal.pone.0075022. eCollection 2013.

7.

Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.

Chen C, Cui Z, Song X, Liu YJ, Cui Q, Feng Y.

Appl Microbiol Biotechnol. 2016 Mar;100(5):2203-12. doi: 10.1007/s00253-015-7071-6. Epub 2015 Oct 31.

PMID:
26521249
8.

PcExl1 a novel acid expansin-like protein from the plant pathogen Pectobacterium carotovorum, binds cell walls differently to BsEXLX1.

Olarte-Lozano M, Mendoza-Nuñez MA, Pastor N, Segovia L, Folch-Mallol J, Martínez-Anaya C.

PLoS One. 2014 Apr 22;9(4):e95638. doi: 10.1371/journal.pone.0095638. eCollection 2014.

9.

[Mics of the Clostridium thermocellum in lignocellulose degradation--a review].

Chen L, Wang L, Zhang H.

Wei Sheng Wu Xue Bao. 2014 Feb 4;54(2):121-8. Review. Chinese.

PMID:
24818461
10.

An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity.

Lee HJ, Lee S, Ko HJ, Kim KH, Choi IG.

Mol Cells. 2010 Apr;29(4):379-85. doi: 10.1007/s10059-010-0033-z. Epub 2010 Mar 4.

11.

Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin.

Georgelis N, Yennawar NH, Cosgrove DJ.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14830-5. doi: 10.1073/pnas.1213200109. Epub 2012 Aug 27.

12.

Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization.

Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ.

Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16876-81. doi: 10.1073/pnas.0809382105. Epub 2008 Oct 29.

13.

The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A.

Alahuhta M, Xu Q, Bomble YJ, Brunecky R, Adney WS, Ding SY, Himmel ME, Lunin VV.

J Mol Biol. 2010 Sep 17;402(2):374-87. doi: 10.1016/j.jmb.2010.07.028. Epub 2010 Jul 21.

PMID:
20654622
14.

A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose.

Shill K, Miller K, Clark DS, Blanch HW.

Bioresour Technol. 2012 Dec;126:290-7. doi: 10.1016/j.biortech.2012.08.062. Epub 2012 Aug 23.

PMID:
23079416
15.

A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose.

Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX.

J Biotechnol. 2013 Oct 10;168(1):24-31. doi: 10.1016/j.jbiotec.2013.07.028. Epub 2013 Jul 31.

PMID:
23916949
16.

The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis.

Nakagame S, Chandra RP, Saddler JN.

Biotechnol Bioeng. 2010 Apr 1;105(5):871-9. doi: 10.1002/bit.22626.

PMID:
19998278
17.

Pretreatment of lignocellulosic biomass using Fenton chemistry.

Kato DM, Elía N, Flythe M, Lynn BC.

Bioresour Technol. 2014 Jun;162:273-8. doi: 10.1016/j.biortech.2014.03.151. Epub 2014 Apr 5.

PMID:
24759643
18.

The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides.

Swiątek K, Lewandowska M, Swiątek M, Bednarski W, Brzozowski B.

Bioresour Technol. 2014 Jan;151:323-31. doi: 10.1016/j.biortech.2013.10.090. Epub 2013 Nov 5.

PMID:
24269826
19.

Bacterial expansins and related proteins from the world of microbes.

Georgelis N, Nikolaidis N, Cosgrove DJ.

Appl Microbiol Biotechnol. 2015 May;99(9):3807-23. doi: 10.1007/s00253-015-6534-0. Epub 2015 Apr 2. Review.

20.

The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose.

Li J, Li S, Fan C, Yan Z.

Colloids Surf B Biointerfaces. 2012 Jan 1;89:203-10. doi: 10.1016/j.colsurfb.2011.09.019. Epub 2011 Sep 17.

PMID:
21982216

Supplemental Content

Support Center