Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Multiple pathways regulate minisatellite stability during stationary phase in yeast.

Kelly MK, Brosnan L, Jauert PA, Dunham MJ, Kirkpatrick DT.

G3 (Bethesda). 2012 Oct;2(10):1185-95. doi: 10.1534/g3.112.003673. Epub 2012 Oct 1.

2.

Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells.

Kelly MK, Alver B, Kirkpatrick DT.

DNA Repair (Amst). 2011 Jun 10;10(6):556-66. doi: 10.1016/j.dnarep.2011.03.002. Epub 2011 Apr 22.

3.

Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase.

Kelly MK, Jauert PA, Jensen LE, Chan CL, Truong CS, Kirkpatrick DT.

Genetics. 2007 Dec;177(4):2469-79.

4.

The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast.

LeClere AR, Yang JK, Kirkpatrick DT.

Fungal Genet Biol. 2013 Jan;50:33-43. doi: 10.1016/j.fgb.2012.10.007. Epub 2012 Nov 17.

5.

Novel checkpoint pathway organization promotes genome stability in stationary-phase yeast cells.

Alver B, Kelly MK, Kirkpatrick DT.

Mol Cell Biol. 2013 Jan;33(2):457-72. doi: 10.1128/MCB.05831-11. Epub 2012 Nov 12.

6.

A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells.

Alver B, Jauert PA, Brosnan L, O'Hehir M, VanderSluis B, Myers CL, Kirkpatrick DT.

G3 (Bethesda). 2013 Apr 9;3(4):741-756. doi: 10.1534/g3.112.005397.

7.

RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.

Jauert PA, Edmiston SN, Conway K, Kirkpatrick DT.

Mol Cell Biol. 2002 Feb;22(3):953-64.

8.
9.

Mechanisms of human minisatellite mutation in yeast.

Cederberg H, Rannug U.

Mutat Res. 2006 Jun 25;598(1-2):132-43. Epub 2006 Mar 31.

PMID:
16581091
10.
11.
12.

Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.

Milner MJ, Pence NS, Liu J, Kochian LV.

J Integr Plant Biol. 2014 Mar;56(3):271-80. doi: 10.1111/jipb.12169.

PMID:
24433538
14.

Instability of the human minisatellite CEB1 in rad27Delta and dna2-1 replication-deficient yeast cells.

Lopes J, Debrauwère H, Buard J, Nicolas A.

EMBO J. 2002 Jun 17;21(12):3201-11.

16.

Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage.

Xie Y, Liu Y, Argueso JL, Henricksen LA, Kao HI, Bambara RA, Alani E.

Mol Cell Biol. 2001 Aug;21(15):4889-99.

17.
18.

The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z.

Mutat Res. 2012 Dec;740(1-2):21-33. doi: 10.1016/j.mrfmmm.2012.12.004. Epub 2012 Dec 28.

PMID:
23276591
19.

[Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].

Fedoseeva IV, Rikhanov EG, Varakina NN, Rusaleva TM, Pyatrikas DV, Stepanov AV, Fedyaeva AV.

Genetika. 2014 Mar;50(3):273-81. Russian.

PMID:
25438547
20.

Supplemental Content

Support Center