Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress.

Gerashchenko MV, Lobanov AV, Gladyshev VN.

Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17394-9. doi: 10.1073/pnas.1120799109. Epub 2012 Oct 8.

2.

Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis.

Juntawong P, Girke T, Bazin J, Bailey-Serres J.

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E203-12. doi: 10.1073/pnas.1317811111. Epub 2013 Dec 23.

3.

RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis.

Legendre R, Baudin-Baillieu A, Hatin I, Namy O.

Bioinformatics. 2015 Aug 1;31(15):2586-8. doi: 10.1093/bioinformatics/btv174. Epub 2015 Mar 25.

PMID:
25812744
4.

An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA.

Zhang F, Hinnebusch AG.

Nucleic Acids Res. 2011 Apr;39(8):3128-40. doi: 10.1093/nar/gkq1251. Epub 2011 Jan 11.

5.

Translation inhibitors cause abnormalities in ribosome profiling experiments.

Gerashchenko MV, Gladyshev VN.

Nucleic Acids Res. 2014;42(17):e134. doi: 10.1093/nar/gku671. Epub 2014 Jul 23.

6.

Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.

Andreev DE, O'Connor PB, Loughran G, Dmitriev SE, Baranov PV, Shatsky IN.

Nucleic Acids Res. 2017 Jan 25;45(2):513-526. doi: 10.1093/nar/gkw1190. Epub 2016 Dec 6. Review.

7.
8.

Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale.

Michel AM, Baranov PV.

Wiley Interdiscip Rev RNA. 2013 Sep-Oct;4(5):473-90. doi: 10.1002/wrna.1172. Epub 2013 May 20. Review. Erratum in: Wiley Interdiscip Rev RNA. 2017 Sep;8(5):.

9.

Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress.

Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, Li X, Zeng B, Peng L, Hauck A, Zhao H, Song W, Fan Z, Lai J.

Plant J. 2015 Dec;84(6):1206-18. doi: 10.1111/tpj.13073.

10.

Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo.

Young DJ, Guydosh NR, Zhang F, Hinnebusch AG, Green R.

Cell. 2015 Aug 13;162(4):872-84. doi: 10.1016/j.cell.2015.07.041.

11.

Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster.

Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS.

Elife. 2013 Dec 3;2:e01179. doi: 10.7554/eLife.01179.

12.

Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.

Vilela C, Ramirez CV, Linz B, Rodrigues-Pousada C, McCarthy JE.

EMBO J. 1999 Jun 1;18(11):3139-52.

13.

Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae.

Williams I, Richardson J, Starkey A, Stansfield I.

Nucleic Acids Res. 2004 Dec 15;32(22):6605-16. Print 2004.

14.

High-resolution view of the yeast meiotic program revealed by ribosome profiling.

Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS.

Science. 2012 Feb 3;335(6068):552-7. doi: 10.1126/science.1215110. Epub 2011 Dec 22.

15.

Dissecting eukaryotic translation and its control by ribosome density mapping.

Arava Y, Boas FE, Brown PO, Herschlag D.

Nucleic Acids Res. 2005 Apr 28;33(8):2421-32. Print 2005.

16.

Extensive transcript diversity and novel upstream open reading frame regulation in yeast.

Waern K, Snyder M.

G3 (Bethesda). 2013 Feb;3(2):343-52. doi: 10.1534/g3.112.003640. Epub 2013 Feb 1.

17.

Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.

Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP.

Cell Rep. 2016 Feb 23;14(7):1787-1799. doi: 10.1016/j.celrep.2016.01.043. Epub 2016 Feb 11.

18.

Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins.

Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC.

Nat Commun. 2012 Jul 3;3:937. doi: 10.1038/ncomms1938.

19.
20.

The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

Sha W, Martins AM, Laubenbacher R, Mendes P, Shulaev V.

PLoS One. 2013 Sep 20;8(9):e74939. doi: 10.1371/journal.pone.0074939. eCollection 2013.

Supplemental Content

Support Center