Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 132

1.

Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task.

Belyusar D, Snyder AC, Frey HP, Harwood MR, Wallman J, Foxe JJ.

Neuroimage. 2013 Jan 15;65:395-407. doi: 10.1016/j.neuroimage.2012.09.061. Epub 2012 Oct 5.

2.

Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention.

Kelly SP, Foxe JJ, Newman G, Edelman JA.

Eur J Neurosci. 2010 May;31(9):1690-700. doi: 10.1111/j.1460-9568.2010.07219.x.

PMID:
20525082
3.

ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention.

Eimer M, Van Velzen J, Gherri E, Press C.

Brain Res. 2007 Mar 2;1135(1):154-66. Epub 2007 Jan 2.

5.

A parametric fMRI study of overt and covert shifts of visuospatial attention.

Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV.

Neuroimage. 2001 Aug;14(2):310-21.

PMID:
11467905
6.
7.

Similar effect of cueing conditions on attentional and saccadic temporal dynamics.

Filali-Sadouk N, Castet E, Olivier E, Zenon A.

J Vis. 2010 Apr 28;10(4):21.1-13. doi: 10.1167/10.4.21.

PMID:
20465340
8.

Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.

Huber-Huber C, Ditye T, Marchante Fernández M, Ansorge U.

Neuropsychologia. 2016 Nov;92:129-141. doi: 10.1016/j.neuropsychologia.2016.03.035. Epub 2016 Apr 5.

PMID:
27059211
9.

Counterproductive effect of saccadic suppression during attention shifts.

Zénon A, Corneil BD, Alamia A, Filali-Sadouk N, Olivier E.

PLoS One. 2014 Jan 23;9(1):e86633. doi: 10.1371/journal.pone.0086633. eCollection 2014.

10.

Eye movement preparation causes spatially-specific modulation of auditory processing: new evidence from event-related brain potentials.

Gherri E, Driver J, Eimer M.

Brain Res. 2008 Aug 11;1224:88-101. doi: 10.1016/j.brainres.2008.05.044. Epub 2008 May 26.

11.

Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting.

van der Lubbe RH, Neggers SF, Verleger R, Kenemans JL.

Brain Res. 2006 Feb 9;1072(1):133-52. Epub 2006 Jan 20.

PMID:
16427618
12.

Links between eye movement preparation and the attentional processing of tactile events: an event-related brain potential study.

Gherri E, Eimer M.

Clin Neurophysiol. 2008 Nov;119(11):2587-97. doi: 10.1016/j.clinph.2008.07.214. Epub 2008 Sep 10.

13.
14.

An early transient 40 Hz activity discriminates a following pro-saccade from a no-move and anti-saccade choice.

Smyrnis N, Linardatos D, Evdokimidis I, Constantinidis TS, Stefanis CN.

Exp Brain Res. 2001 Aug;139(3):287-96.

PMID:
11545467
15.

Lateralized human cortical activity for shifting visuospatial attention and initiating saccades.

Wauschkuhn B, Verleger R, Wascher E, Klostermann W, Burk M, Heide W, Kömpf D.

J Neurophysiol. 1998 Dec;80(6):2900-10.

16.

Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades.

Weber H, Dürr N, Fischer B.

Exp Brain Res. 1998 Jun;120(4):417-31.

PMID:
9655227
17.

Covert orienting of attention and overt eye movements activate identical brain regions.

de Haan B, Morgan PS, Rorden C.

Brain Res. 2008 Apr 14;1204:102-11. doi: 10.1016/j.brainres.2008.01.105. Epub 2008 Feb 19.

18.

The effects of L-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task.

Gomez-Ramirez M, Kelly SP, Montesi JL, Foxe JJ.

Brain Topogr. 2009 Jun;22(1):44-51. doi: 10.1007/s10548-008-0068-z. Epub 2008 Oct 9.

PMID:
18841456
19.

Anti-saccade error rates as a measure of attentional bias in cocaine dependent subjects.

Dias NR, Schmitz JM, Rathnayaka N, Red SD, Sereno AB, Moeller FG, Lane SD.

Behav Brain Res. 2015 Oct 1;292:493-9. doi: 10.1016/j.bbr.2015.07.006. Epub 2015 Jul 8.

20.

Behavioral oscillations in attention: rhythmic α pulses mediated through θ band.

Song K, Meng M, Chen L, Zhou K, Luo H.

J Neurosci. 2014 Apr 2;34(14):4837-44. doi: 10.1523/JNEUROSCI.4856-13.2014.

Supplemental Content

Support Center